Control over the catalytic activity of enzymes is important to construct biosensors with a wide range of detectability and higher stability. For this, immobilization of enzymes on solid supports as nanostructured films is a current approach that permits easy control of the molecular architecture as well as tuning of the properties. In this article, we employed acylated carrageenan (AC) mixed with phospholipids at the air-water interface to facilitate the adsorption of the enzyme sucrose phosphorylase (SP).
View Article and Find Full Text PDFColloids Surf B Biointerfaces
April 2014
The production of bioelectronic devices, including biosensors, can be conducted using enzymes immobilized in ultrathin solid films, for which preserving the enzymatic catalytic activity is crucial for optimal performance. In this sense, nanostructured films that allow for control over molecular architectures are of interest. In this paper, we investigate the adsorption of sucrose phosphorylase onto Langmuir monolayers of the phospholipid dimyristoylphosphatidic acid, which caused the surface pressure isotherms to expand.
View Article and Find Full Text PDF