Extracting patient phenotypes from routinely collected health data (such as Electronic Health Records) requires translating clinically-sound phenotype definitions into queries/computations executable on the underlying data sources by clinical researchers. This requires significant knowledge and skills to deal with heterogeneous and often imperfect data. Translations are time-consuming, error-prone and, most importantly, hard to share and reproduce across different settings.
View Article and Find Full Text PDFSmog disasters are becoming more and more frequent and may cause severe consequences on the environment and public health, especially in urban areas. Social media as a real-time urban data source has become an increasingly effective channel to observe people׳s reactions on smog-related health hazard. It can be used to capture possible smog-related public health disasters in its early stage.
View Article and Find Full Text PDF