Publications by authors named "Jeff Yoshimi"

Mouse tracking is an important source of data in cognitive science. Most contemporary mouse tracking studies use binary-choice tasks and analyze the curvature or velocity of an individual mouse movement during an experimental trial as participants select from one of the two options. However, there are many types of mouse tracking data available beyond what is produced in a binary-choice task, including naturalistic data from web users.

View Article and Find Full Text PDF

Embodied approaches to cognition see abstract thought and language as grounded in interactions between mind, body, and world. A particularly important challenge for embodied approaches to cognition is mathematics, perhaps the most abstract domain of human knowledge. Conceptual metaphor theory, a branch of cognitive linguistics, describes how abstract mathematical concepts are grounded in concrete physical representations.

View Article and Find Full Text PDF

Aron Gurwitsch's theory of the structure and dynamics of consciousness has much to offer contemporary theorizing about consciousness and its basis in the embodied brain. On Gurwitsch's account, as we develop it, the field of consciousness has a variable sized focus or "theme" of attention surrounded by a structured periphery of inattentional contents. As the field evolves, its contents change their status, sometimes smoothly, sometimes abruptly.

View Article and Find Full Text PDF

Traditionally different approaches to the study of cognition have been viewed as competing explanatory frameworks. An alternative view, explanatory pluralism, regards different approaches to the study of cognition as complementary ways of studying the same phenomenon, at specific temporal and spatial scales, using appropriate methodological tools. Explanatory pluralism has been often described abstractly, but has rarely been applied to concrete cases.

View Article and Find Full Text PDF

I show how the dynamics of consciousness can be formally derived from the "open dynamics" of neural activity, and develop a mathematical framework for neuro-phenomenological investigation. I describe the space of possible brain states, the space of possible conscious states, and a "supervenience function" linking them. I show how this framework can be used to associate phenomenological structures with neuro-computational structures, and vice-versa.

View Article and Find Full Text PDF