Publications by authors named "Jeff Tepper"

As the need for nasal, ocular, spinal, and articular therapeutic compounds increases, toxicology assessments of drugs administered via these routes play an important role in human safety. This symposium outlined the local and systemic evaluation to support safety during the development of these drugs in nonclinical models with some case studies. Discussions included selection of appropriate species for the intended route; conducting nonclinical studies that closely mimic the intended use with adequate duration; functional assessment, if deemed necessary; evaluation of local tissues with special histological staining procedure; and evaluations of safety margins based on local and systemic toxicity.

View Article and Find Full Text PDF

This article provides an overview of the discussions held by the Immunomodulatory Subcommittee of the Oligonucleotide Safety Working Group on complement activation induced by oligonucleotides, most notably the phosphorothioate-containing oligonucleotides. Alternative complement pathway activation in monkeys is a common effect of single-stranded phosphorothioate backbone oligonucleotides in toxicology studies. This article discusses the mechanism for activation, general investigational strategy, and the impact of various chemical modifications.

View Article and Find Full Text PDF

This document was prepared by the Safety Pharmacology Subcommittee of the Oligonucleotide Safety Working Group (OSWG), a group of industry and regulatory scientists involved in the development and regulation of therapeutic oligonucleotides. The mission of the Subcommittee was to develop scientific recommendations for the industry regarding the appropriate scope and strategies for safety pharmacology evaluations of oligonucleotides (ONs). These recommendations are the consensus opinion of the Subcommittee and do not necessarily reflect the current expectations of regulatory authorities.

View Article and Find Full Text PDF

Oligonucleotides (ONs) are an emerging class of drugs being developed for the treatment of a wide variety of diseases including the treatment of respiratory diseases by the inhalation route. As a class, their toxicity on human lungs has not been fully characterized, and predictive toxicity biomarkers have not been identified. To that end, identification of sensitive methods and biomarkers that can detect toxicity in humans before any long term and/or irreversible side effects occur would be helpful.

View Article and Find Full Text PDF