Sickle cell disease (SCD) is caused by an inherited mutation in hemoglobin that leads to sickle hemoglobin (HbS) polymerization and premature HbS denaturation. Previous publications have shown that HbS denaturation is followed by binding of denatured HbS (a.k.
View Article and Find Full Text PDFCurrent models of the erythrocyte membrane depict three populations of band 3: (i) a population tethered to spectrin via ankyrin, (ii) a fraction attached to the spectrin-actin junctional complex via adducin, and (iii) a freely diffusing population. Because many studies of band 3 diffusion also distinguish three populations of the polypeptide, it has been speculated that the three populations envisioned in membrane models correspond to the three fractions observed in diffusion analyses. To test this hypothesis, we characterized band 3 diffusion by single-particle tracking in wild-type and ankyrin- and adducin-deficient erythrocytes.
View Article and Find Full Text PDFDiffusion of two Escherichia coli outer membrane proteins-the cobalamin (vitamin B12) receptor (BtuB) and the OmpF porin, which are implicated in the cellular import pathways of colicins and phages-was measured in vivo. The lateral mobility of these proteins is relevant to the mechanism of formation of the translocon for cellular import of colicins such as the rRNase colicin E3. The diffusion coefficient (D) of BtuB, the primary colicin receptor, complexed to fluorescent antibody or colicin, is 0.
View Article and Find Full Text PDFDuring definitive erythropoiesis, erythroid precursors undergo differentiation through multiple nucleated states to an enucleated reticulocyte, which loses its residual RNA/organelles to become a mature erythrocyte. Over the course of these transformations, continuous changes in membrane proteins occur, including shifts in protein abundance, rates of expression, isoform prominence, states of phosphorylation, and stability. In an effort to understand when assembly of membrane proteins into an architecture characteristic of the mature erythrocyte occurs, we quantitated the lateral diffusion of the most abundant membrane protein, band 3 (AE1), during each stage of erythropoiesis using single particle tracking.
View Article and Find Full Text PDFMembrane-spanning proteins may interact with a variety of other integral and peripheral membrane proteins via a diversity of protein-protein interactions. Not surprisingly, defects or mutations in any one of these interacting components can impact the physical and biological properties on the entire complex. Here we use quantum dots to image the diffusion of individual band 3 molecules in the plasma membranes of intact human erythrocytes from healthy volunteers and patients with defects in one of their membrane components, leading to well-known red cell pathologies (hereditary spherocytosis, hereditary elliptocytosis, hereditary hydrocytosis, Southeast Asian ovalocytosis, and hereditary pyropoikilocytosis).
View Article and Find Full Text PDFSince the advent of single particle/molecule microscopies, researchers have applied these techniques to understanding the fluid membranes of cells. By observing diffusion of membrane proteins and lipids in live cell membranes of eukaryotic cells, it has been found that membranes contain a mosaic of fluid compartments. Such structure may be instrumental in understanding key characteristics of the membrane.
View Article and Find Full Text PDF