Background: PDGFβ receptors and their ligand, PDGF-BB, are upregulated in vivo after neuronal insults such as ischemia. When applied exogenously, PDGF-BB is neuroprotective against excitotoxicity and HIV proteins.
Objective: Given this growth factor's neuroprotective ability, we sought to determine if PDGF-BB would be neuroprotective against amyloid-β (1-42), one of the pathological agents associated with Alzheimer's disease (AD).
Many G protein-coupled receptors (GPCRs), including serotonin (5-HT) receptors promote the activity of receptor tyrosine kinases (RTKs) via intracellular signaling pathways in a process termed transactivation. Although transactivation pathways are commonly initiated by a GPCR, a recent report demonstrated that serotonin-selective reuptake inhibitors (SSRIs) were able to block 5-HT-induced transactivation of the platelet-derived growth factor (PDGF) type β receptor. We show that a 45 min pretreatment of SH-SY5Y cells with the SSRI fluoxetine indeed blocked 5-HT-induced transactivation of the PDGFβ receptor.
View Article and Find Full Text PDFHigh concentrations of reactive oxygen species (ROS) induce cellular damage, however at lower concentrations ROS act as intracellular second messengers. In this study, we demonstrate that serotonin (5-HT) transactivates the platelet-derived growth factor (PDGF) type β receptor as well as the TrkB receptor in neuronal cultures and SH-SY5Y cells, and that the transactivation of both receptors is ROS-dependent. Exogenous application of H₂O₂ induced the phosphorylation of these receptors in a dose-dependent fashion, similar to that observed with 5-HT.
View Article and Find Full Text PDFBackground: N-methyl-D-aspartate (NMDA) receptors are regulated by several G protein-coupled receptors (GPCRs) as well as receptor tyrosine kinases. Serotonin (5-HT) type 7 receptors are expressed throughout the brain including the thalamus and hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors promotes the expression of neuroprotective growth factor receptors, including the platelet-derived growth factor (PDGF) β receptors which can protect neurons against NMDA-induced neurotoxicity.
View Article and Find Full Text PDFThe serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity.
View Article and Find Full Text PDFIn the absence of ligand, certain growth factor receptors can be activated via G-protein coupled receptor (GPCR) activation in a process termed transactivation. Serotonin (5-HT) receptors can transactivate platelet-derived growth factor (PDGF) β receptors in smooth muscle cells, but it is not known if similar pathways occur in neuronal cells. Here we show that 5-HT can transiently increase the phosphorylation of PDGFβ receptors through 5-HT(1A) receptors in a time- and dose-dependent manner in SH-SY5Y neuroblastoma cells.
View Article and Find Full Text PDFSeveral antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons.
View Article and Find Full Text PDF