Control of the singlet-triplet energy gap (Δ) is central to realizing productive energy conversion reactions, photochemical reaction trajectories, and emergent applications that exploit molecular spin physics. Despite this, no systematic methods have been defined to tune Δ in simple molecular frameworks, let alone by an approach that also holds chromophore size and electronic structural parameters (such as the HOMO-LUMO gap) constant. Using a combination of molecular design, photophysical and potentiometric experiments, and quantum chemical analyses, we show that the degree of electron-electron repulsion in excited singlet and triplet states may be finely controlled through the substitution pattern of a simple porphyrin absorber, enabling regulation of relative electronically excited singlet and triplet state energies by the designed restriction of the electron-electron Coulomb () and exchange () interaction magnitudes.
View Article and Find Full Text PDFAdvanced functionality in molecular electronics and spintronics is orchestrated by exact molecular arrangements at metal surfaces, but the strategies for constructing such arrangements remain limited. Here, we report the synthesis and surface hybridization of a cyclophane that comprises two pyrene groups fastened together by two ferrocene pillars. Crystallographic structure analysis revealed pyrene planes separated by ∼352 pm and stacked in an eclipsed geometry that approximates the rare configuration of AA-stacked bilayer graphene.
View Article and Find Full Text PDFA macrocycle that integrates three ferrocene-pyrene dyads in a triangular C2-symmetric arrangement is synthesised as a racemate in a simple one-pot approach. Crystal structural analysis reveals two enantiomeric conformers that pack alternatingly via π-π stacking and interconvert dynamically in solution. Electrochemical investigations indicate weak electrostatic interactions between Fc groups upon oxidation to a mixed valence triangle.
View Article and Find Full Text PDFThis paper describes a surface analysis technique that uses the "EGaIn junction" to measure tunneling current densities ((V), amps/cm) through self-assembled monolayers (SAMs) terminated in a chelating group and incorporating different transition metal ions. Comparisons of (V) measurements between bare chelating groups and chelates are used to characterize the composition of the SAM and infer the dissociation constant (, mol/L), as well as kinetic rate constants ( L/mols; 1/s) of the reversible chelate-metal reaction. To demonstrate the concept, SAMs of 11-(4-methyl-2,2'-bipyrid-4'-yl (bpy))undecanethiol (HS(CH)bpy) were incubated within ethanol solutions of metal salts.
View Article and Find Full Text PDFPeriodic actuation of multiple soft, pneumatic actuators requires coordinated function of multiple, separate components. This work demonstrates a soft, pneumatic ring oscillator that induces temporally coordinated periodic motion in soft actuators using a single, constant-pressure source, without hard valves or electronic controls. The fundamental unit of this ring oscillator is a soft, pneumatic inverter (an inverting Schmitt trigger) that switches between its two states ("on" and "off") using two instabilities in elastomeric structures: buckling of internal tubing and snap-through of a hemispherical membrane.
View Article and Find Full Text PDFAlthough soft devices (grippers, actuators, and elementary robots) are rapidly becoming an integral part of the broad field of robotics, autonomy for completely soft devices has only begun to be developed. Adaptation of conventional systems of control to soft devices requires hard valves and electronic controls. This paper describes completely soft pneumatic digital logic gates having a physical scale appropriate for use with current (macroscopic) soft actuators.
View Article and Find Full Text PDFWe present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip.
View Article and Find Full Text PDFProtein catalysis requires the atomic-level orchestration of side chains, substrates and cofactors, and yet the ability to design a small-molecule-binding protein entirely from first principles with a precisely predetermined structure has not been demonstrated. Here we report the design of a novel protein, PS1, that binds a highly electron-deficient non-natural porphyrin at temperatures up to 100 °C. The high-resolution structure of holo-PS1 is in sub-Å agreement with the design.
View Article and Find Full Text PDFRealizing chromophores that simultaneously possess substantial near-infrared (NIR) absorptivity and long-lived, high-yield triplet excited states is vital for many optoelectronic applications, such as optical power limiting and triplet-triplet annihilation photon upconversion (TTA-UC). However, the energy gap law ensures such chromophores are rare, and molecular engineering of absorbers having such properties has proven challenging. Here, we present a versatile methodology to tackle this design issue by exploiting the ethyne-bridged (polypyridyl)metal(II) (M; M = Ru, Os)-(porphinato)metal(II) (PM'; M' = Zn, Pt, Pd) molecular architecture (M-(PM')-M), wherein high-oscillator-strength NIR absorptivity up to 850 nm, near-unity intersystem crossing (ISC) quantum yields (Φ), and triplet excited-state (T) lifetimes on the microseconds time scale are simultaneously realized.
View Article and Find Full Text PDFWhile the influence of proquinoidal character upon the linear absorption spectrum of low optical bandgap π-conjugated polymers and molecules is well understood, its impact upon excited-state relaxation pathways and dynamics remains obscure. We report the syntheses, electronic structural properties, and excited-state dynamics of a series of model highly conjugated near-infrared (NIR)-absorbing chromophores based on a (porphinato)metal(ii)-proquinoidal spacer-(porphinato)metal(ii) () structural motif. A combination of excited-state dynamical studies and time-dependent density functional theory calculations: (i) points to the cardinal role that excited-state configuration interaction (CI) plays in determining the magnitudes of S → S radiative (), S → T intersystem crossing (), and S → S internal conversion () rate constants in these chromophores, and (ii) suggests that a primary determinant of CI magnitude derives from the energetic alignment of the and fragment LUMOs (Δ).
View Article and Find Full Text PDFWe report the first synthesis of a covalent expanded isophlorin dimer from two 24-π doubly S-confused sapphyrin-like pentathiaisophlorins. It exhibits marginal peripheral aromaticity rather than strong global diatropicity or paratropicity and weak intermacrocycle electronic communication. Quantum chemical methods discern that cross-conjugation is responsible for these unusual electronic features.
View Article and Find Full Text PDFChallenging photochemistry demands high-potential visible-light-absorbing photo-oxidants. We report (i) a highly electron-deficient Ru(II) complex (eDef-Rutpy) bearing an E potential more than 300 mV more positive than that of any established Ru(II) bis(terpyridyl) derivative, and (ii) an ethyne-bridged eDef-Rutpy-(porphinato)Zn(II) (eDef-RuPZn) supermolecule that affords both panchromatic UV-vis spectral domain absorptivity and a high E potential, comparable to that of Ce(NH)(NO) [E(Ce) = 1.61 V vs NHE], a strong and versatile ground-state oxidant commonly used in organic functional group transformations.
View Article and Find Full Text PDFSpin and conformational dynamics in symmetric alkyne-bridged multi[copper(II) porphyrin] structures have been studied in toluene solution at variable temperature using steady-state electron paramagnetic resonance (EPR) spectroscopy. Comparison of the dimer EPR spectra to those of Cu porphyrin monomers shows evidence of an isotropic exchange interaction (J) in these biradicaloid structures, manifested by a significant line broadening in the dimer spectra. The extent line broadening depends on molecular structure and temperature, suggesting J is modulated by conformational dynamics that impact the torsional angle distribution between the porphyrin-porphyrin least-squares planes.
View Article and Find Full Text PDFThe influence of electronic symmetry on triplet state delocalization in linear zinc porphyrin oligomers is explored by electron paramagnetic resonance techniques. Using a combination of transient continuous wave and pulse electron nuclear double resonance spectroscopies, it is demonstrated experimentally that complete triplet state delocalization requires the chemical equivalence of all porphyrin units. These results are supported by density functional theory calculations, showing uneven delocalization in a porphyrin dimer in which a terminal ethynyl group renders the two porphyrin units inequivalent.
View Article and Find Full Text PDFWe provide a direct measure of the change in effective dielectric constant (ε(S)) within a protein matrix after a photoinduced electron transfer (ET) reaction. A linked donor-bridge-acceptor molecule, PZn-Ph-NDI, consisting of a (porphinato)Zn donor (PZn), a phenyl bridge (Ph), and a naphthalene diimide acceptor (NDI), is shown to be a "meter" to indicate protein dielectric environment. We calibrated PZn-Ph-NDI ET dynamics as a function of solvent dielectric, and computationally de novo designed a protein SCPZnI3 to bind PZn-Ph-NDI in its interior.
View Article and Find Full Text PDFMolecular electronics offers the potential to control device functions through the fundamental electronic properties of individual molecules, but realization of such possibilities is typically frustrated when such specialized molecules are integrated into a larger area device. Here we utilize highly conjugated (porphinato)metal-based oligomers (PM(n) structures) as molecular wire components of nanotransfer printed (nTP) molecular junctions; electrical characterization of these "bulk" nTP devices highlights device resistances that depend on PM(n) wire length. Device resistance measurements, determined as a function of PM(n) molecular length, were utilized to evaluate the magnitude of a phenomenological β corresponding to the resistance decay parameter across the barrier; these data show that the magnitude of this β value is modulated via porphyrin macrocycle central metal atom substitution [β(PZn(n); 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2015
The electron polaron, a spin-1/2 excitation, is the fundamental negative charge carrier in π-conjugated organic materials. Large polaron spatial dimensions result from weak electron-lattice coupling and thus identify materials with unusually low barriers for the charge transfer reactions that are central to electronic device applications. Here we demonstrate electron polarons in π-conjugated multiporphyrin arrays that feature vast areal delocalization.
View Article and Find Full Text PDFSingle-walled carbon nanotube (SWNT)-based nanohybrid compositions based on (6,5) chirality-enriched SWNTs ([(6,5) SWNTs]) and a chiral n-type polymer (S-PBN(b)-Ph4 PDI) that exploits a perylenediimide (PDI)-containing repeat unit are reported; S-PBN(b)-Ph4 PDI-[(6,5) SWNT] superstructures feature a PDI electron acceptor unit positioned at 3 nm intervals along the nanotube surface, thus controlling rigorously SWNT-electron acceptor stoichiometry and organization. Potentiometric studies and redox-titration experiments determine driving forces for photoinduced charge separation (CS) and thermal charge recombination (CR) reactions, as well as spectroscopic signatures of SWNT hole polaron and PDI radical anion (PDI(-.) ) states.
View Article and Find Full Text PDFElectron spin resonance (ESR) spectroscopic line shape analysis and continuous-wave (CW) progressive microwave power saturation experiments are used to probe the relaxation behavior and the relaxation times of charged excitations (hole and electron polarons) in meso-to-meso ethyne-bridged (porphinato)zinc(II) oligomers (PZnn compounds), which can serve as models for the relevant states generated upon spin injection. The observed ESR line shapes for the PZnn hole polaron ([PZnn](+•)) and electron polaron ([PZnn](-•)) states evolve from Gaussian to more Lorentzian as the oligomer length increases from 1.9 to 7.
View Article and Find Full Text PDFPolymersomes are bilayer vesicles that self-assemble from amphiphilic diblock copolymers, and provide an attractive system for the delivery of biological and nonbiological molecules due to their environmental compatibility, mechanical stability, synthetic tunability, large aqueous core, and hyperthick hydrophobic membrane. Herein, we report a nanoscale photoresponsive polymersome system featuring a meso-to-meso ethyne-bridged bis[(porphinato)zinc] (PZn2) fluorophore hydrophobic membrane solute and dextran in the aqueous core. Upon 488 nm irradiation in solution or in microinjected zebrafish embryos, the polymersomes underwent deformation, as monitored by a characteristic red-shifted PZn2 emission spectrum and confirmed by cryo-TEM.
View Article and Find Full Text PDFThe syntheses, potentiometric responses, optical spectra, electronic structural properties, and integration into photovoltaic devices are described for ethyne-bridged isoindigo-(porphinato)zinc(II)-isoindigo chromophores built upon either electron-rich 10,20-diaryl porphyrin (Ar-Iso) or electron-deficient 10,20-bis(perfluoroalkyl)porphyrin (Rf-Iso) frameworks. These supermolecules evince electrochemical responses that trace their geneses to their respective porphyrinic and isoindigoid subunits. The ethyne linkage motif effectively mixes the comparatively weak isoindigo-derived visible excitations with porphyrinic π-π* states, endowing Ar-Iso and Rf-Iso with high extinction coefficient (ε ∼ 10(5) M(-1)·cm(-1)) long-axis polarized absorptions.
View Article and Find Full Text PDFSingle molecule break junction experiments and nonequilibrium Green's function calculations using density functional theory (NEGF-DFT) of carbodithioate- and thiol-terminated [5,15-bis(phenylethynyl)-10,20-diarylporphinato]zinc(II) complexes reveal the impact of the electrode-linker coordination mode on charge transport at the single-molecule level. Replacement of thiolate (-S(-)) by the carbodithioate (-CS2(-)) anchoring motif leads to an order of magnitude increase of single molecule conductance. In contrast to thiolate-terminated structures, metal-molecule-metal junctions that exploit the carbodithioate linker manifest three distinct conductance values.
View Article and Find Full Text PDFEthyne elaboration of a (porphinato)Zn(II) (PZn) chromophoric core renders fine control over the zero-field splitting (ZFS) parameters of the lowest energy photoexcited triplet state (T1), resulting in the ability to manipulate the spin distribution and establish highly symmetrical coincident optical and magnetic principal axes.
View Article and Find Full Text PDFUnderstanding and controlling electron transport through functional molecules are of primary importance to the development of molecular scale devices. In this work, the single molecule resistances of meso-to-meso ethyne-bridged (porphinato)zinc(II) structures (PZn(n) compounds), connected to gold electrodes via (4'-thiophenyl)ethynyl termini, are determined using scanning tunneling microscopy-based break junction methods. These experiments show that each α,ω-di[(4'-thiophenyl)ethynyl]-terminated PZn(n) compound (dithiol-PZn(n)) manifests a dual molecular conductance.
View Article and Find Full Text PDFProbes embedded within a structure can enable prediction of material behavior or failure. Carefully assembled composites that respond intelligently to physical changes within a material could be useful as intrinsic sensors. Molecular rotors are one such tool that can respond optically to physical environmental changes.
View Article and Find Full Text PDF