Publications by authors named "Jeff Pootoolal"

NuA4, the only essential histone acetyltransferase complex in Saccharomyces cerevisiae, acetylates the N-terminal tails of histones H4 and H2A. Affinity purification of NuA4 revealed the presence of three previously undescribed subunits, Vid21/Eaf1/Ydr359c, Swc4/Eaf2/Ygr002c, and Eaf7/Ynl136w. Experimental analyses revealed at least two functionally distinct sets of polypeptides in NuA4: (i) Vid21 and Yng2, and (ii) Eaf5 and Eaf7.

View Article and Find Full Text PDF

We have programmed human cells to express physiological levels of recombinant RNA polymerase II (RNAPII) subunits carrying tandem affinity purification (TAP) tags. Double-affinity chromatography allowed for the simple and efficient isolation of a complex containing all 12 RNAPII subunits, the general transcription factors TFIIB and TFIIF, the RNAPII phosphatase Fcp1, and a novel 153-kDa polypeptide of unknown function that we named RNAPII-associated protein 1 (RPAP1). The TAP-tagged RNAPII complex is functionally active both in vitro and in vivo.

View Article and Find Full Text PDF

Nearly 20% of yeast genes are required for viability, hindering genetic analysis with knockouts. We created promoter-shutoff strains for over two-thirds of all essential yeast genes and subjected them to morphological analysis, size profiling, drug sensitivity screening, and microarray expression profiling. We then used this compendium of data to ask which phenotypic features characterized different functional classes and used these to infer potential functions for uncharacterized genes.

View Article and Find Full Text PDF

Messenger RNA 3'-end formation is functionally coupled to transcription by RNA polymerase II. By tagging and purifying Ref2, a non-essential protein previously implicated in mRNA cleavage and termination, we isolated a multiprotein complex, holo-CPF, containing the yeast cleavage and polyadenylation factor (CPF) and six additional polypeptides. The latter can form a distinct complex, APT, in which Pti1, Swd2, a type I protein phosphatase (Glc7), Ssu72 (a TFIIB and RNA polymerase II-associated factor), Ref2, and Syc1 are associated with the Pta1 subunit of CPF.

View Article and Find Full Text PDF

The glycopeptide antibiotics vancomycin and teicoplanin are vital components of modern anti-infective chemotherapy exhibiting outstanding activity against Gram-positive pathogens including members of the genera Streptococcus, Staphylococcus, and Enterococcus. These antibiotics also provide fascinating examples of the chemical and associated biosynthetic complexity exploitable in the synthesis of natural products by actinomycetes group of bacteria. We report the sequencing and annotation of the biosynthetic gene cluster for the glycopeptide antibiotic from Streptomyces toyocaensis NRRL15009, the first complete sequence for a teicoplanin class glycopeptide.

View Article and Find Full Text PDF

Glycopeptide antibiotics are integral components of the current antibiotic arsenal that is under strong pressures as a result of the emergence of a variety of resistance mechanisms over the past 15 years. Resistance has manifested itself largely through the expression of genes that encode proteins that reprogram cell wall biosynthesis and thus evade the action of the antibiotic in the enterococci, though recently new mechanisms have appeared that afford resistance and tolerance in the more virulent staphylococci and streptococci. Overcoming glycopeptide resistance will require innovative approaches to generate new antibiotics or otherwise to inhibit the action of resistance elements in various bacteria.

View Article and Find Full Text PDF