According to the manifold hypothesis, real data can be compressed to lie on a low-dimensional manifold. This paper explores the estimation of the dimensionality of this manifold with an interest in identifying independent degrees of freedom and possibly identifying state variables that would govern materials systems. The challenges identified that are specific to materials science are (i) accurate estimation of the number of dimensions of the data, (ii) coping with the intrinsic random and low-bit-depth nature of microstructure samples, and (iii) linking noncompressed domains such as processing to microstructure.
View Article and Find Full Text PDFWe propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations.
View Article and Find Full Text PDF