Publications by authors named "Jeff MacDonald"

The creation of human liver models has long been a critical objective in academic, clinical, and pharmaceutical research, particularly for drug development, where accurate evaluation of hepatic metabolic dynamics is crucial. We have developed a bioengineered, perfused, organ-level human liver model that accurately replicates key liver functions, including metabolic activities, and protein synthesis, thus addressing some of the limitations associated with traditional liver monolayers, organoids, and matrix-embedded liver cells. Our approach utilizes liver-specific biomatrix scaffolds, prepared using an innovative protocol and fortified with matrix components that facilitate cellular interactions.

View Article and Find Full Text PDF

Purpose: Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach.

Methods: Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort.

View Article and Find Full Text PDF

Fluorescence detected sedimentation velocity (FDS-SV) has emerged as a powerful technique for the study of high-affinity protein interactions, with hydrodynamic resolution exceeding that of diffusion-based techniques, and with sufficient sensitivity for binding studies at low picomolar concentrations. For the detailed quantitative analysis of the observed sedimentation boundaries, it is necessary to adjust the conventional sedimentation models to the FDS data structure. A key consideration is the change in the macromolecular fluorescence intensity during the course of the experiment, caused by slow drifts of the excitation laser power, and/or by photophysical processes.

View Article and Find Full Text PDF

A major challenge in developing therapies based on progenitor or stem cell populations (from sources other than bone marrow) involves developing a mode to deliver these cells in a manner that optimizes their viability, engraftment, proliferation, and differentiation. We have previously isolated a hepatic progenitor cell (HPC) population from adult liver tissue that differentiates into hepatic and biliary cell subtypes. We postulated that, using electrostatic encapsulation, we could reproducibly generate an ex vivo environment for the HPCs.

View Article and Find Full Text PDF