Publications by authors named "Jeff Leiding"

We present the first application of reactive Monte Carlo in a first-principles context. The algorithm samples in a modified NVT ensemble in which the volume, temperature, and total number of atoms of a given type are held fixed, but molecular composition is allowed to evolve through stochastic variation of chemical connectivity. We discuss general features of the method, as well as techniques needed to enhance the efficiency of Boltzmann sampling.

View Article and Find Full Text PDF

We describe the modifications that a spatially varying external load produces on a Born-Oppenheimer potential energy surface (PES) by calculating static quantities of interest. The effects of the external loads are exemplified using electronic structure calculations (at the HF/6-31G(∗∗) level) of two different molecules: ethane and hexahydro-1,3,5-trinitro-s-triazine (RDX). The calculated transition states and Hessian matrices of stationary points show that spatially varying external loads shift the stationary points and modify the curvature of the PES, thereby affecting the harmonic transition rates by altering both the energy barrier as well as the prefactor.

View Article and Find Full Text PDF

We present a Nested Markov chain Monte Carlo (NMC) scheme for building equilibrium averages based on accurate potentials such as density functional theory. Metropolis sampling of a reference system, defined by an inexpensive but approximate potential, was used to substantially decorrelate configurations at which the potential of interest was evaluated, thereby dramatically reducing the number needed to build ensemble averages at a given level of precision. The efficiency of this procedure was maximized on-the-fly through variation of the reference system thermodynamic state (characterized here by its inverse temperature β(0)), which was otherwise unconstrained.

View Article and Find Full Text PDF

The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N-F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements.

View Article and Find Full Text PDF

Early flowtube studies showed that (CH(3))(2)S (DMS) reacted very rapidly with F(2); hydrogen sulfide (H(2)S), however, did not. Recent crossed molecular beam studies found no barrier to the reaction between DMS and F(2) to form CH(2)S(F)CH(3) + HF. At higher collision energies, a second product channel yielding (CH(3))(2)S-F + F was identified.

View Article and Find Full Text PDF

In previous work, we reported that the lowest-lying excited states of SF, SCl, SF(2), SFCl, and SCl(2) have recoupled pair bonds. In this study, we examine the analogous low-spin states--the (2)Σ(-) and (2)Δ states of SF and SCl and the excited singlet states of SF(2), SCl(2), and SFCl--which also possess recoupled pair bonds. In contrast to the excited states treated previously, the states studied in the present work have the same spin multiplicities as their respective ground states and are thus potentially observable via electronic excitation.

View Article and Find Full Text PDF

Following a previous study of bonding and isomerism in the SF(n) and singly chloro-substituted SF(n-1)Cl (n = 1-6) series, we describe bonding in the ground and low-lying excited states of the completely substituted series, SCl(n) (n = 1-6). All structures were characterized at least at the RCCSD(T)/aug-cc-pV(Q+d)Z level of theory. Both differences and similarities were observed between SCl(n) and our previous results on SF(n-1)Cl and SF(n).

View Article and Find Full Text PDF

Using high-level MRCI and CCSD(T) quantum chemical calculations, we report structures, energetics, and other properties of the sulfur fluoromonochloride family (SF(n-1)Cl, n = 1-6). Our group previously studied the sulfur fluoride family (SF(n), n = 1-6) and found that several of the excited states of SF and SF(2) as well as the ground states of SF(3)-SF(6) exhibited a new type of bonding, called recoupled pair bonding. Comparing the SF(n-1)Cl and SF(n) species allows us to study isomerism, apicophilicities, and substituent effects due to the Cl substitution.

View Article and Find Full Text PDF

We use ab initio steered molecular dynamics to investigate the mechanically induced ring opening of cyclobutene. We show that the dynamical results can be considered in terms of a force-modified potential energy surface (FMPES). We show how the minimal energy paths for the two possible competing conrotatory and disrotatory ring-opening reactions are affected by external force.

View Article and Find Full Text PDF