Publications by authors named "Jeff J Doyle"

Premise: There is a general lack of consensus on the best practices for filtering of single-nucleotide polymorphisms (SNPs) and whether it is better to use SNPs or include flanking regions (full "locus") in phylogenomic analyses and subsequent comparative methods.

Methods: Using genotyping-by-sequencing data from 22 species, we assessed the effects of SNP vs. locus usage and SNP retention stringency.

View Article and Find Full Text PDF

Eperua is a genus of Neotropical trees that forms a major component of tropical lowland forests in Amazonia, especially in the Guiana Shield and on white-sand forests. One species occurs in the Cerrado-Caatinga ecotone, and the genus also inhabits riverine and terra firme forests. Species in Eperua exhibit one of two drastically different floral architectures and inflorescence types, each associated with distinct pollinators.

View Article and Find Full Text PDF

Background: Root nodule symbiosis (RNS) is a fascinating evolutionary event. Given that limited genes conferring the evolution of RNS in Leguminosae have been functionally validated, the genetic basis of the evolution of RNS remains largely unknown. Identifying the genes involved in the evolution of RNS will help to reveal the mystery.

View Article and Find Full Text PDF

Premise: Traditional methods of ploidal-level estimation are tedious; using DNA sequence data for cytotype estimation is an ideal alternative. Multiple statistical approaches to leverage sequence data for ploidy inference based on site-based heterozygosity have been developed. However, these approaches may require high-coverage sequence data, use inappropriate probability distributions, or have additional statistical shortcomings that limit inference abilities.

View Article and Find Full Text PDF
Article Synopsis
  • Gene innovation is crucial for the evolution of traits, particularly in the context of Leguminosae plants and their rhizobial symbioses, which are key for nitrogen fixation in agriculture.
  • The research focused on identifying gene gain events in the evolution of root nodule symbiosis (RNS) in Leguminosae, discovering that these genes were mainly acquired through gene duplication and underwent strong purifying selection.
  • Among the findings, type II chalcone isomerase (CHI) genes, particularly CHI1A and CHI1B, showed structural divergences and functional differences, with CHI1B being essential for nodulation in legumes like soybean and Medicago truncatula, shedding light on genetic
View Article and Find Full Text PDF

The concept of "cell type," though fundamental to cell biology, is controversial. Cells have historically been classified into types based on morphology, physiology, or location. More recently, single cell transcriptomic studies have revealed fine-scale differences among cells with similar gross phenotypes.

View Article and Find Full Text PDF

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.

View Article and Find Full Text PDF

The species tree paradigm that dominates current molecular systematic practice infers species trees from collections of sequences under assumptions of the multispecies coalescent (MSC), that is, that there is free recombination between the sequences and no (or very low) recombination within them. These coalescent genes (c-genes) are thus defined in an historical rather than molecular sense and can in theory be as large as an entire genome or as small as a single nucleotide. A debate about how to define c-genes centers on the contention that nuclear gene sequences used in many coalescent analyses undergo too much recombination, such that their introns comprise multiple c-genes, violating a key assumption of the MSC.

View Article and Find Full Text PDF

The importance of allopolyploidy in plant evolution has been widely recognized. The genetic changes triggered by allopolyploidy, however, are not yet fully understood due to inconsistent phenomena reported across diverse species. The construction of synthetic polyploids offers a controlled approach to systematically reveal genomic changes that occur during the process of polyploidy.

View Article and Find Full Text PDF

Gene duplication is a key evolutionary phenomenon, prevalent in all organisms but particularly so in plants, where whole genome duplication (WGD; polyploidy) is a major force in genome evolution. Much effort has been expended in attempting to understand the evolution of duplicate genes, addressing such questions as why some paralog pairs rapidly return to single copy status whereas, in other pairs, both paralogs are retained and may diverge in expression pattern or function. The effect of a gene - its site of expression and thus the initial locus of its function - occurs at the level of a cell comprising a single cell type at a given state of the cell's development.

View Article and Find Full Text PDF

The prevalence and recurrence of whole-genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy.

View Article and Find Full Text PDF

The gene balance hypothesis postulates that there is selection on gene copy number (gene dosage) to preserve the stoichiometric balance among interacting proteins. This presupposes that gene product abundance is governed by gene dosage and that gene dosage responses are consistent for interacting genes in a dosage-balance-sensitive network or complex. Gene dosage responses, however, have rarely been quantified, and the available data suggest that they are highly variable.

View Article and Find Full Text PDF

Polyploidy is hypothesized to cause dosage imbalances between the nucleus and the other genome-containing organelles (mitochondria and plastids), but the evidence for this is limited. We performed RNA-seq on diploids and their derived autopolyploids to quantify the degree of inter-genome coordination of transcriptional responses to nuclear whole genome duplication in two different organs (sepals and rosette leaves). We show that nuclear and organellar genomes exhibit highly coordinated responses in both organs.

View Article and Find Full Text PDF

Based on evolutionary, phylogenomic, and synteny analyses of genome sequences for more than a dozen diverse legume species as well as analysis of chromosome counts across the legume family, we conclude that the genus provides a plausible model for an early evolutionary form of the legume genome. The small genus is in the earliest-diverging clade in the earliest-diverging legume subfamily (Cercidoideae). The genome is physically small, and has accumulated mutations at an unusually slow rate compared to other legumes.

View Article and Find Full Text PDF

Root nodule endosymbiosis with nitrogen-fixing bacteria provides plants with unlimited access to fixed nitrogen, but at a significant energetic cost. Nodulation is generally considered to have originated in parallel in different lineages, but this hypothesis downplays the genetic complexity of nodulation and requires independent recruitment of many common features across lineages. Recent phylogenomic studies revealed that genes that function in establishing or maintaining nitrogen-fixing nodules are independently lost in non-nodulating relatives of nitrogen-fixing plants.

View Article and Find Full Text PDF

Ploidy and size phenomena are observed to be correlated across several biological scales, from subcellular to organismal. Two kinds of ploidy change can affect plants. Whole-genome multiplication increases ploidy in whole plants and is broadly associated with increases in cell and organism size.

View Article and Find Full Text PDF

Premise Of The Study: The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines.

View Article and Find Full Text PDF

Background: Kudzu, Pueraria montana var. lobata, is a woody vine native to Southeast Asia that has been introduced globally for cattle forage and erosion control. The vine is highly invasive in its introduced areas, including the southeastern US.

View Article and Find Full Text PDF

The root nodule symbiosis of plants with nitrogen-fixing bacteria affects global nitrogen cycles and food production but is restricted to a subset of genera within a single clade of flowering plants. To explore the genetic basis for this scattered occurrence, we sequenced the genomes of 10 plant species covering the diversity of nodule morphotypes, bacterial symbionts, and infection strategies. In a genome-wide comparative analysis of a total of 37 plant species, we discovered signatures of multiple independent loss-of-function events in the indispensable symbiotic regulator in 10 of 13 genomes of nonnodulating species within this clade.

View Article and Find Full Text PDF

Premise Of The Study: The development of pipelines for locus discovery has spurred the use of target enrichment for plant phylogenomics. However, few studies have compared pipelines from locus discovery and bait design, through validation, to tree inference. We compared three methods within Leguminosae (Fabaceae) and present a workflow for future efforts.

View Article and Find Full Text PDF

Root nodule symbioses (nodulation) and whole genome duplication (WGD, polyploidy) are both important phenomena in the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the origin or refinement of nodulation. However, while nodulation and polyploidy have been studied independently, there have been no direct studies of mechanisms affecting the interactions between these phenomena in symbiotic, nodule-forming species.

View Article and Find Full Text PDF

The Cucurbita genus contains several economically important species in the Cucurbitaceae family. Here, we report high-quality genome sequences of C. maxima and C.

View Article and Find Full Text PDF

Winged bean, Psophocarpus tetragonolobus (L.) DC., is analogous to soybean in yield and nutritional quality, proving a valuable alternative to soybean in tropical regions of the world.

View Article and Find Full Text PDF