This paper reports a comprehensive investigation of a magnetic nanoparticle (MNP), named M55, which belongs to a class of innovative doped ferrite nanomaterials, characterized by a self-limiting temperature. M55 is obtained from M48, an MNP previously described by our group, by implementing an additional purification step in the synthesis. M55, after citrate and glucose coating, is named G-M55.
View Article and Find Full Text PDFMaterials (Basel)
February 2021
The scientific community has made great efforts in advancing magnetic hyperthermia for the last two decades after going through a sizeable research lapse from its establishment. All the progress made in various topics ranging from nanoparticle synthesis to biocompatibilization and in vivo testing have been seeking to push the forefront towards some new clinical trials. As many, they did not go at the expected pace.
View Article and Find Full Text PDFNanoparticle tracers with small sizes and large magnetization are critical for biomedical imaging and especially for magnetic particle imaging (MPI). Small size is important for accessing future intracellular and neurological in vivo applications Here, we show <15 nm nanoparticles made of zero valent iron cores, iron oxide shells and coated with a strongly binding brush co-polymer are effective MPI tracers. The small nanoparticle cores create a hydrodynamic diameter that is half of the state-of-the-art iron oxide tracers while the strongly magnetic zero valent iron maintains similar MPI signal magnitude and resolution.
View Article and Find Full Text PDFBackground: Islet transplantation (Tx) represents the most promising therapy to restore normoglycemia in type 1 diabetes (T1D) patients to date. As significant islet loss has been observed after the procedure, there is an urgent need for developing strategies for monitoring transplanted islet grafts. In this report we describe for the first time the application of magnetic particle imaging (MPI) for monitoring transplanted islets in the liver and under the kidney capsule in experimental animals.
View Article and Find Full Text PDF