Publications by authors named "Jeff DeJong"

Background: In this report we evaluate the use of Xenopus laevis oocytes as a matched germ cell system for characterizing the organization and transcriptional activity of a germ cell-specific X. laevis promoter.

Principal Findings: The promoter from the ALF transcription factor gene was cloned from X.

View Article and Find Full Text PDF

This letter describes the architecture and transcriptional output of a novel noncoding RNA gene in mouse and rat. The mRNA-like piRNA (mpiR) gene, lies between the Perp and KIAA1244 genes on mouse chromosome 10 and rat chromosome 1. In mouse, the mpiR gene is associated with the production of at least 13 different alternatively spliced and polyadenylated transcripts ranging from 500 nt to over 6 kb.

View Article and Find Full Text PDF

Germ cell-specific genes are active in oocytes and spermatocytes but are silent in all other cell types. To understand the basis for this seemingly simple pattern of regulation, we characterized factors that recognize the promoter-proximal region of the germ cell-specific TFIIA alpha/beta-like factor (ALF) gene. Two of the protein-DNA complexes formed with liver extracts (C4 and C5) are due to the zinc finger proteins Sp1 and Sp3, respectively, whereas another complex (C6) is due to the transcription factor RFX1.

View Article and Find Full Text PDF

This article reports on the comparative cell type-specific expression profiles of selected core promoter-associated transcription factors during gametogenesis and embryogenesis in frogs and mice. In frogs we tested TBP, TRF2/TLF, TRF3, TFIIAalphabeta, and ALF, as well as variant forms of TAFs 4, 5, and 6. Four of these factors, TRF3, TAF4L, TAF5L, and the previously-characterized ALF gene, are preferentially expressed in testis and ovary.

View Article and Find Full Text PDF

The patterns of gene expression in spermatocytes and oocytes are quite different from those in somatic cells. The messenger RNAs produced by these cells are not only required to support germ cell development but, in the case of oocytes, they are also used for maturation, fertilization, and early embryogenesis. Recent studies have begun to provide an explanation for how germ-cell-specific programs of gene expression are generated.

View Article and Find Full Text PDF

The control of gene expression in reproductive tissues involves a number of unique germ cell-specific transcription factors. One such factor, ALF (TFIIA tau), encodes a protein similar to the large subunit of general transcription factor TFIIA. To understand how this factor is regulated, we characterized transgenic mice that contain the ALF promoter linked to either beta-galactosidase or green fluorescent protein (GFP) reporters.

View Article and Find Full Text PDF

The discovery of germ cell-specific general transcription factor and coactivator variants has suggested that reproductive tissues control gene expression somewhat differently than somatic tissues. One of these factors, ALF (TFIIAtau), was first described as a testis-specific counterpart of the large (alpha/beta) subunit of TFIIA. Here we characterize endogenous ALF and TFIIA activities in the African clawed frog Xenopus laevis.

View Article and Find Full Text PDF

The transcription factor TFIIA stabilizes the interaction between the TATA-binding protein (TBP) and promoter DNA and facilitates activator function. In yeast, TFIIA is composed of large (TOA1) and small (TOA2) subunits that interact to form a beta-barrel domain and a helix bundle domain. Here we report plasmid shuffle experiments showing that the human subunits (TFIIAalpha/beta, ALF, and TFIIAgamma) are not able to support growth in yeast and that the failure is associated with morphological abnormalities related to cell division.

View Article and Find Full Text PDF

The assembly and stability of the RNA polymerase II transcription preinitiation complex on a eukaryotic core promoter involves the effects of TFIIA on the interaction between TATA-binding protein (TBP) and DNA. To extend our understanding of these interactions, we characterized properties of ALF, a germ cell-specific TFIIA-like factor. ALF was able to stabilize the binding of TBP to DNA, but it could not stabilize TBP mutants A184E, N189E, E191R, and R205E nor could it facilitate binding of the TBP-like factor TRF2/TLF to a consensus TATA element.

View Article and Find Full Text PDF

ALF (TFIIAalpha/beta-like factor) is a germ cell-specific counterpart of the large (alpha/beta) subunit of general transcription factor TFIIA. Here we isolated homologous GC-rich promoters from the mouse and human ALF genes and used promoter deletion analysis to identify sequences active in COS-7 and 293 cells. Further, bisulfite sequence analysis of the mouse ALF promoter showed that all 21 CpG dinucleotides between -179 and +207 were partially methylated in five somatic tissues, brain, heart, liver, lung, and muscle, and in epididymal spermatozoa from adult mice.

View Article and Find Full Text PDF