Background And Purpose: No best practices currently exist for achieving high quality radiation therapy (RT) treatment plan adaptation during magnetic resonance (MR) guided RT of prostate cancer. This study validates the use of machine learning (ML) automated RT treatment plan adaptation and benchmarks it against current clinical RT plan adaptation methods.
Materials And Methods: We trained an atlas-based ML automated treatment planning model using reference MR RT treatment plans (42.
Background And Purpose: Application of different deformable dose accumulation (DDA) solutions makes institutional comparisons after online-adaptive magnetic resonance-guided radiotherapy (OA-MRgRT) challenging. The aim of this multi-institutional study was to analyze accuracy and agreement of DDA-implementations in OA-MRgRT.
Material And Methods: One gold standard (GS) case deformed with a biomechanical-model and five clinical cases consisting of prostate (2x), cervix, liver, and lymph node cancer, treated with OA-MRgRT, were analyzed.
Background And Purpose: Integrated magnetic resonance linear accelerator (MR-Linac) systems offer potential for biologically based adaptive radiation therapy using apparent diffusion coefficient (ADC). Accurate tracking of longitudinal ADC changes is key to establishing ADC-driven dose adaptation. Here, we report repeatability and reproducibility of intraprostatic ADC using deformable image registration (DIR) to correct for inter-fraction prostate changes.
View Article and Find Full Text PDFPurpose: Children who require radiation therapy (RT) should ideally be treated awake, without anaesthesia, if possible. Audiovisual distraction is a known method to facilitate awake treatment, but its effectiveness at keeping children from moving during treatment is not known. The aim of this study was to evaluate intrafraction movement of children receiving RT while awake.
View Article and Find Full Text PDFRecent innovations in image guidance, treatment delivery, and adaptive radiotherapy (RT) have created a new paradigm for planning target volume (PTV) margin design for patients with prostate cancer. We performed a review of the recent literature on PTV margin selection and design for intact prostate RT, excluding post-operative RT, brachytherapy, and proton therapy. Our review describes the increased focus on prostate and seminal vesicles as heterogenous deforming structures with further emergence of intra-prostatic GTV boost and concurrent pelvic lymph node treatment.
View Article and Find Full Text PDFPostoperative prostate radiotherapy requires large planning target volume (PTV) margins to account for motion and deformation of the prostate bed. Adaptive radiation therapy (ART) can incorporate image-guidance data to personalize PTVs that maintain coverage while reducing toxicity. We present feasibility and dosimetry results of a prospective study of postprostatectomy ART.
View Article and Find Full Text PDFThe purpose of this guideline is to provide a list of critical performance tests to assist the Qualified Medical Physicist (QMP) in establishing and maintaining a safe and effective quality assurance (QA) program. The performance tests on a linear accelerator (linac) should be selected to fit the clinical patterns of use of the accelerator and care should be given to perform tests which are relevant to detecting errors related to the specific use of the accelerator. Current recommendations for linac QA were reviewed to determine any changes required to those tests highlighted by the original report as well as considering new components of the treatment process that have become common since its publication.
View Article and Find Full Text PDFJ Appl Clin Med Phys
May 2023
Purpose: Adaptive radiation therapy (ART) on the integrated Elekta Unity magnetic resonance (MR)-linac requires routine quality assurance to verify delivery accuracy and system data transfer. In this work, our objective was to develop and validate a novel automated end-to-end test suite that verifies data transfer between multiple software platforms and quantifies the performance of multiple machine subcomponents critical to the ART process.
Methods: We designed and implemented a software tool to quantify the MR and megavoltage (MV) isocenter coincidence, treatment couch positioning consistency, isocenter shift accuracy for the adapted plan as well as the MLC and jaw position accuracy following the beam aperture adaptation.
Tech Innov Patient Support Radiat Oncol
September 2022
Purpose: The purpose of this study is to evaluate the impact of intrafraction pelvic motion by comparing the adapted plan dose (APD) and the computed delivered dose of the day (DDOTD) for patients with prostate cancer (PCa) treated with SBRT on the MR-Linac.
Methods: Twenty patients with PCa treated with MR-guided adaptive SBRT were included. A 9-field IMRT distribution was adapted based on the anatomy of the day to deliver a total prescription dose of 3000 cGy in 5 fractions to the prostate plus a 5 mm isotropic margin.
Purpose: To design, develop, and evaluate an interactive simulation-based learning tool for treatment plan evaluation for radiation oncology and medical physics residents to address gaps in learning.
Methods And Materials: We first conducted a needs assessment for optimal learning tool design and case selection. Next, we generated a curated database of cases with clinically unacceptable treatment plans accessible through an in-house developed interactive web-based digital imaging and communications in medicine-radiation therapy viewer.
Importance: Rising cancer incidence combined with improvements in systemic and local therapies extending life expectancy are translating into more patients with spinal metastases. This makes the multidisciplinary management of spinal metastases and development of new therapies increasingly important. Spinal metastases may cause significant pain and reduced quality of life and lead to permanent neurological disability if compression of the spinal cord and/or nerve root occurs.
View Article and Find Full Text PDFOur objective was to investigate direct voxel-wise relationship between dose and early MR biomarker changes both within and in the high-dose region surrounding brain metastases following stereotactic radiosurgery (SRS). Specifically, we examined the apparent diffusion coefficient (ADC) from diffusion-weighted imaging and the contrast transfer coefficient (Ktrans) and volume of extracellular extravascular space (ve) derived from dynamic contrast-enhanced (DCE) MRI data. We investigated 29 brain metastases in 18 patients using 3 T MRI to collect imaging data at day 0, day 3 and day 20 following SRS.
View Article and Find Full Text PDFInt J Radiat Oncol Biol Phys
November 2015
Purpose: To quantify random uncertainties in robotic radiosurgical treatment of liver lesions with real-time respiratory motion management.
Methods And Materials: We conducted a retrospective analysis of 27 liver cancer patients treated with robotic radiosurgery over 118 fractions. The robotic radiosurgical system uses orthogonal x-ray images to determine internal target position and correlates this position with an external surrogate to provide robotic corrections of linear accelerator positioning.
The PCO2 in arterial blood (PaCO2) is a good parameter for monitoring ventilation and acid-base changes in ventilated patients, but its measurement is invasive and difficult to obtain in small children. Attempts have been made to use the partial pressure of CO2 in end-tidal gas (PETCO2), as a noninvasive surrogate for PaCO2. Studies have revealed that, unfortunately, the differences between PETCO2 and PaCO2 are too variable to be clinically useful.
View Article and Find Full Text PDFPurpose: To provide the first comparison of absolute renal perfusion obtained by arterial spin labeling (ASL) and separable compartment modeling of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). Moreover, we provide the first application of the dual bolus approach to quantitative DCE-MRI perfusion measurements in the kidney.
Materials And Methods: Consecutive ASL and DCE-MRI acquisitions were performed on six rabbits on a 1.
Rationale And Objectives: Longitudinal (T(1)) and effective transverse (T(2)*) magnetic resonance (MR) relaxation times provide noninvasive measures of tissue oxygenation. The objective for this study was to quantify independent effects of inhaled O(2) and CO(2) on normal tissue T(1) and T(2)* in rabbit liver, kidney, and paraspinal muscle.
Materials And Methods: Three gas challenges (100% O(2), 10% CO(2) [balance air], and carbogen [90% O(2) + 10% CO(2)]) were delivered to the rabbits in random order to isolate the effects of inspired O(2) and CO(2).
Magnetic resonance imaging (MRI) relaxation times provide indirect estimates of tissue O(2) for monitoring tumour oxygenation. This study provides insight into mechanisms underlying longitudinal (R(1) = 1/T(1)) and transverse effective (R(2)* = 1/T(2)*) relaxation rate changes during inhalation of 100% O(2) and 3%, 6% and 9% CO(2) (balanced O(2)) in a rabbit tumour model. Quantitative R(1), R(2)*, and dynamic contrast-enhanced (DCE) imaging was performed in six rabbits 12-23 days following implantation of VX2 carcinoma cells in the quadricep muscle.
View Article and Find Full Text PDFThe swine brain is emerging as a potentially valuable translational animal model of neurodevelopment and offers the ability to assess the impact of experimentally induced neurological disorders. The goal for this study was to characterize swine brain development using noninvasive MRI measures of microstructural and cerebrovascular changes. Thirteen pigs at various postnatal ages (2.
View Article and Find Full Text PDFPurpose: To demonstrate the feasibility and repeatability of cerebrovascular reactivity (CVR) imaging using a controlled CO(2) challenge in mechanically ventilated juvenile pigs.
Materials And Methods: Precise end-tidal partial pressure CO(2) (PETCO(2)) control was achieved via a computer-controlled model-driven prospective end-tidal targeting (MPET) system integrated with mechanical ventilation using a custom-built secondary breathing circuit. Test-retest blood-oxygen level dependent (BOLD) CVR images were collected in nine juvenile pigs by quantifying the BOLD response to iso-oxic square-wave PETCO(2) changes.
Sex differences in structure and organization of the corpus callosum (CC) have been identified in healthy adults and may be linked to distinct functional lateralization and processing in men and women. Magnetic resonance imaging (MRI) has facilitated noninvasive assessment of CC sex differences in morphology by volumetric imaging and microstructural organization by diffusion tensor imaging (DTI). Incorporation of recently developed myelin-water fraction (MWF) imaging may improve our understanding of CC sex differences.
View Article and Find Full Text PDFPurpose: To evaluate the reproducibility and gender differences in cerebrovascular reactivity (CVR) measurements obtained using the blood-oxygen level dependent (BOLD) response to controlled changes in end-tidal partial pressure of carbon dioxide (PETCO(2)).
Materials And Methods: We obtained ethical approval to image 19 healthy volunteers (10 men, 9 women) on a 1.5 Tesla (T) MRI scanner twice on two separate days using identical procedures.
Purpose: To quantitatively compare spiral imaging and sensitivity-encoded-echo-planar-imaging (SENSE-EPI) methods for blood oxygen level-dependent (BOLD) imaging using controlled changes in the end-tidal partial pressure of CO(2) (PetCO(2)) to provide a global BOLD response. Specifically, we examined susceptibility-field-gradient effects on the BOLD sensitivity throughout the brain.
Materials And Methods: We quantified cerebrovascular reactivity (CVR) using the BOLD response to cyclic changes in PetCO(2) in five healthy volunteers at 1.
Near-infrared spectroscopy (NIRS) offers the ability to assess brain function at the bedside of critically ill neonates. Our group previously demonstrated a persistent reduction in the cerebral metabolic rate of oxygen (CMRO(2)) after hypoxia-ischemia (HI) in newborn piglets. The purpose of this current study was to determine the causes of this reduction by combining NIRS with magnetic resonance spectroscopy (MRS) to measure high-energy metabolites and diffusion-weighted imaging to measure cellular edema.
View Article and Find Full Text PDFOptimization of magnetization-prepared rapid gradient-echo (MP-RAGE) sequence variations for maximum white matter (WM) versus gray matter (GM) contrast in neonates at 3T was investigated. Numerical simulations were applied to optimize and compare three contrast preparation modules and to assess the effect of phase encoding (PE) order on contrast between WM and thin cortical GM layers. Simulations predict that a new sequence, which combines both T(1)- and T(2)-weighting into the contrast preparation and utilizes an interleaved elliptical-spiral PE order, should provide the strongest contrast between neonatal WM and cortical GM.
View Article and Find Full Text PDF