Atomic defects in the solid state are a key component of quantum repeater networks for long-distance quantum communication. Recently, there has been significant interest in rare earth ions, in particular Er for its telecom band optical transition that allows long-distance transmission in optical fibres. However, the development of repeater nodes based on rare earth ions has been hampered by optical spectral diffusion, precluding indistinguishable single-photon generation.
View Article and Find Full Text PDFA series of garnets of formula ErGaO are described, for which we report the crystal structures for both polycrystalline and single-crystal samples. The limit in the garnet phase is between 0.5 and 0.
View Article and Find Full Text PDFExecuting quantum algorithms on error-corrected logical qubits is a critical step for scalable quantum computing, but the requisite numbers of qubits and physical error rates are demanding for current experimental hardware. Recently, the development of error correcting codes tailored to particular physical noise models has helped relax these requirements. In this work, we propose a qubit encoding and gate protocol for Yb neutral atom qubits that converts the dominant physical errors into erasures, that is, errors in known locations.
View Article and Find Full Text PDFIntegrating atomic quantum memories based on color centers in diamond with on-chip photonic devices would enable entanglement distribution over long distances. However, efforts towards integration have been challenging because color centers can be highly sensitive to their environment, and their properties degrade in nanofabricated structures. Here, we describe a heterogeneously integrated, on-chip, III-V diamond platform designed for neutral silicon vacancy (SiV) centers in diamond that circumvents the need for etching the diamond substrate.
View Article and Find Full Text PDFSpin-photon interfaces based on solid-state atomic defects have enabled a variety of key applications in quantum information processing. To maximize the light-matter coupling strength, defects are often placed inside nanoscale devices. Efficiently coupling light and microwave radiation into these structures is an experimental challenge, especially in cryogenic or high vacuum environments with limited sample access.
View Article and Find Full Text PDFSolid-state spin defects are a promising platform for quantum science and technology. The realization of larger-scale quantum systems with solid-state defects will require high-fidelity control over multiple defects with nanoscale separations, with strong spin-spin interactions for multi-qubit logic operations and the creation of entangled states. We demonstrate an optical frequency-domain multiplexing technique, allowing high-fidelity initialization and single-shot spin measurement of six rare-earth (Er) ions, within the subwavelength volume of a single, silicon photonic crystal cavity.
View Article and Find Full Text PDFOptically-interfaced spins in the solid state are a promising platform for quantum technologies. A crucial component of these systems is high-fidelity, projective measurement of the spin state. Here, we demonstrate single-shot spin readout of a single rare earth ion qubit, Er, which is attractive for its telecom-wavelength optical transition and compatibility with silicon nanophotonic circuits.
View Article and Find Full Text PDFAtomic and atomlike defects in the solid state are widely explored for quantum computers, networks, and sensors. Rare earth ions are an attractive class of atomic defects that feature narrow spin and optical transitions that are isolated from the host crystal, allowing incorporation into a wide range of materials. However, the realization of long electronic spin coherence times is hampered by magnetic noise from abundant nuclear spins in the most widely studied host crystals.
View Article and Find Full Text PDFBound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states.
View Article and Find Full Text PDFRealizing robust quantum phenomena in strongly interacting systems is one of the central challenges in modern physical science. Approaches ranging from topological protection to quantum error correction are currently being explored across many different experimental platforms, including electrons in condensed-matter systems, trapped atoms and photons. Although photon-photon interactions are typically negligible in conventional optical media, strong interactions between individual photons have recently been engineered in several systems.
View Article and Find Full Text PDF