Mechanisms of synaptic vesicular fusion and neurotransmitter clearance are highly controlled processes whose finely-tuned regulation is critical for neural function. This modulation has been suggested to involve pre-synaptic auto-receptors; however, their underlying mechanisms of action remain unclear. Previous studies with the well-defined C.
View Article and Find Full Text PDFReactive oxygen species (ROS) production and breakdown have been studied in detail in plant-pathogenic fungi, including the rice blast fungus, Magnaporthe oryzae; however, the examination of the dynamic process of ROS production in real time has proven to be challenging. We resynthesized an existing ROS sensor, called HyPer, to exhibit optimized codon bias for fungi, specifically Neurospora crassa, and used a combination of microscopy and plate reader assays to determine whether this construct could detect changes in fungal ROS during the plant infection process. Using confocal microscopy, we were able to visualize fluctuating ROS levels during the formation of an appressorium on an artificial hydrophobic surface, as well as during infection on host leaves.
View Article and Find Full Text PDF