Objective: GABA receptor subunit mutations pose a significant risk for genetic generalized epilepsy; however, there are over 150 identified variants, many with unknown or unvalidated pathogenicity. We aimed to develop in vivo models for testing GABA receptor variants using the model organism, Caenorhabditis elegans.
Methods: CRISPR-Cas9 gene editing was used to create a complete deletion of unc-49, a C.
Cysteine string protein (CSP) is a member of the DnaJ/Hsp40 family of molecular chaperones. CSP is enriched in neurons, where it mainly localises to synaptic vesicles. Mutations in CSP-encoding genes in flies, worms, mice and humans result in neuronal dysfunction, neurodegeneration and reduced lifespan.
View Article and Find Full Text PDFCysteine string protein α (CSPα), also known as DNAJC5, is a member of the DnaJ/Hsp40 family of co-chaperones. The name derives from a cysteine-rich domain, palmitoylation of which enables localization to intracellular membranes, notably neuronal synaptic vesicles. Mutations in the DNAJC5 gene that encodes CSPα cause autosomal dominant, adult-onset neuronal ceroid lipofuscinosis (ANCL), a rare neurodegenerative disease.
View Article and Find Full Text PDFBiological pathways between alcohol consumption and alcohol liver disease (ALD) are not fully understood. We selected genes with known effect on (1) alcohol consumption, (2) liver function, and (3) gene expression. Expression of the orthologs of these genes in Caenorhabditis elegans and Drosophila melanogaster was suppressed using mutations and/or RNA interference (RNAi).
View Article and Find Full Text PDFChanges in neuronal function that occur with age are an area of increasing importance. A potential significant contributor to age-dependent decline may be alterations to neurotransmitter release. Protein kinases, such as Protein Kinase C and Protein Kinase A, are well characterised modulators of neuronal function and neurotransmission.
View Article and Find Full Text PDFAutosomal dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is a rare neurodegenerative disorder characterized by progressive dementia and premature death. Four ANCL-causing mutations have been identified, all mapping to the DNAJC5 gene that encodes cysteine string protein α (CSPα). Here, using Caenorhabditis elegans, we describe an animal model of ANCL in which disease-causing mutations are introduced into their endogenous chromosomal locus, thereby mirroring the human genetic disorder.
View Article and Find Full Text PDFWith the large numbers of man-made chemicals produced and released in the environment, there is a need to provide assessments on their potential effects on environmental safety and human health. Current regulatory frameworks rely on a mix of both hazard and risk-based approaches to make safety decisions, but the large number of chemicals in commerce combined with an increased need to conduct assessments in the absence of animal testing makes this increasingly challenging. This challenge is catalysing the use of more mechanistic knowledge in safety assessment from both in silico and in vitro approaches in the hope that this will increase confidence in being able to identify modes of action (MoA) for the chemicals in question.
View Article and Find Full Text PDFDietary restriction (DR) has been shown to increase lifespan in organisms ranging from yeast to mammals. This suggests that the underlying mechanisms may be evolutionarily conserved. Indeed, upstream signalling pathways, such as TOR, are strongly linked to DR-induced longevity in various organisms.
View Article and Find Full Text PDFObjective: Genetic variants in STXBP1, which encodes the conserved exocytosis protein Munc18-1, are associated with a variety of infantile epilepsy syndromes. We aimed to develop an in vivo Caenorhabditis elegans model that could be used to test the pathogenicity of such variants in a cost-effective manner.
Methods: The CRISPR/Cas9 method was used to introduce a null mutation into the unc-18 gene (the C.
High alcohol consumption is a risk factor for morbidity and mortality, yet few genetic loci have been robustly associated with alcohol intake. Here, we use U.K.
View Article and Find Full Text PDFBackground: Epilepsy affects around 1% of people, but existing antiepileptic drugs (AEDs) only offer symptomatic relief and are ineffective in approximately 30% of patients. Hence, new AEDs are sorely needed. However, a major bottleneck is the low-throughput nature of early-stage AED screens in conventional rodent models.
View Article and Find Full Text PDFThe antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action.
View Article and Find Full Text PDFAlcohol is a potent pharmacological agent when consumed acutely at sufficient quantities and repeated overuse can lead to addiction and deleterious effects on health. Alcohol is thought to modulate neuronal function through low-affinity interactions with proteins, in particular with membrane channels and receptors. Paradoxically, alcohol acts as both a stimulant and a sedative.
View Article and Find Full Text PDFNeuronal calcium sensor-1 (NCS-1) mediates changes in cellular function by regulating various target proteins. Many potential targets have been identified but the physiological significance of only a few has been established. Upon temperature elevation, Caenorhabditis elegans exhibits reversible paralysis.
View Article and Find Full Text PDFAddiction to drugs is strongly determined by multiple genetic factors. Alcohol and nicotine produce distinct pharmacological effects within the nervous system through discrete molecular targets; yet, data from family and twin analyses support the existence of common genetic factors for addiction in general. The mechanisms underlying addiction, however, are poorly described and common genetic factors for alcohol and nicotine remain unidentified.
View Article and Find Full Text PDFAge-associated neurodegenerative disorders such as Alzheimer's disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing.
View Article and Find Full Text PDFThe original version of this article [1] unfortunately contained a mistake. The author list contained a spelling error for the author Hannah V. McCue.
View Article and Find Full Text PDFBackground: Many neurodegenerative diseases are associated with protein misfolding/aggregation. Treatments mitigating the effects of such common pathological processes, rather than disease-specific symptoms, therefore have general therapeutic potential.
Results: Here we report that the anti-epileptic drug ethosuximide rescues the short lifespan and chemosensory defects exhibited by C.
Cysteine string protein (CSP) is a chaperone of the Dnaj/Hsp40 family of proteins and is essential for synaptic maintenance. Mutations in the human gene encoding CSP, DNAJC5, cause adult neuronal ceroid lipofucinosis (ANCL) which is characterised by progressive dementia, movement disorders, seizures and premature death. CSP null models in mice, flies and worms have been shown to also exhibit similar neurodegenerative phenotypes.
View Article and Find Full Text PDFAdult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission.
View Article and Find Full Text PDFThe molecular mechanisms underlying sensitivity to alcohol are incompletely understood. Recent research has highlighted the involvement of two presynaptic proteins, Munc18 and Rab3. We have previously characterised biochemically a number of specific Munc18 point mutations including an E466K mutation that augments a direct Rab3 interaction.
View Article and Find Full Text PDFBackground: Intracellular Ca2+ regulates many aspects of neuronal function through Ca2+ binding to EF hand-containing Ca2+ sensors that in turn bind target proteins to regulate their function. Amongst the sensors are the neuronal calcium sensor (NCS) family of proteins that are involved in multiple neuronal signalling pathways. Each NCS protein has specific and overlapping targets and physiological functions and specificity is likely to be determined by structural features within the proteins.
View Article and Find Full Text PDFDiacylglycerol (DAG)/protein kinase C (PKC) signaling plays an integral role in the regulation of neuronal function. This is certainly true in Caenorhabditis elegans and in particular for thermosensory signaling and behavior. Downstream molecular targets for transduction of this signaling cascade remain, however, virtually uncharacterized.
View Article and Find Full Text PDFThe process of regulated exocytosis has received considerable interest as a key component of synaptic transmission. Fusion of presynaptic vesicles and the subsequent release of their neurotransmitter contents is driven by a series of interactions between evolutionarily conserved proteins. Key insights into the molecular mechanisms of vesicle fusion have come from research using genetic model systems such as the nematode worm Caenorhabditis elegans.
View Article and Find Full Text PDFThe release of hormones and neurotransmitters, mediated by regulated exocytosis, can be modified by regulation of the fusion pore. The fusion pore is considered stable and narrow initially, eventually leading to the complete merger of the vesicle and the plasma membranes. By using the high-resolution patch-clamp capacitance technique, we studied single vesicles and asked whether the Sec1/Munc18 proteins, interacting with the membrane fusion-mediating SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, affect fusion pore properties.
View Article and Find Full Text PDF