Publications by authors named "Jeff A Bilmes"

The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone.

View Article and Find Full Text PDF

We study the problem of maximizing deep submodular functions (DSFs) [13, 3] subject to a matroid constraint. DSFs are an expressive class of submodular functions that include, as strict subfamilies, the facility location, weighted coverage, and sums of concave composed with modular functions. We use a strategy similar to the continuous greedy approach [6], but we show that the multilinear extension of any DSF has a natural and computationally attainable concave relaxation that we can optimize using gradient ascent.

View Article and Find Full Text PDF

A central problem in mass spectrometry analysis involves identifying, for each observed tandem mass spectrum, the corresponding generating peptide. We present a dynamic Bayesian network (DBN) toolkit that addresses this problem by using a machine learning approach. At the heart of this toolkit is a DBN for Rapid Identification (DRIP), which can be trained from collections of high-confidence peptide-spectrum matches (PSMs).

View Article and Find Full Text PDF

Unlabelled: Tandem mass spectrometry (MS/MS) is the dominant high throughput technology for identifying and quantifying proteins in complex biological samples. Analysis of the tens of thousands of fragmentation spectra produced by an MS/MS experiment begins by assigning to each observed spectrum the peptide that is hypothesized to be responsible for generating the spectrum. This assignment is typically done by searching each spectrum against a database of peptides.

View Article and Find Full Text PDF

We present a peptide-spectrum alignment strategy that employs a dynamic Bayesian network (DBN) for the identification of spectra produced by tandem mass spectrometry (MS/MS). Our method is fundamentally generative in that it models peptide fragmentation in MS/MS as a physical process. The model traverses an observed MS/MS spectrum and a peptide-based theoretical spectrum to calculate the best alignment between the two spectra.

View Article and Find Full Text PDF

Shotgun proteomics is a high-throughput technology used to identify unknown proteins in a complex mixture. At the heart of this process is a prediction task, the , in which each fragmentation spectrum produced by a shotgun proteomics experiment must be mapped to the peptide (protein subsequence) which generated the spectrum. We propose a new algorithm for spectrum identification, based on dynamic Bayesian networks, which significantly out-performs the de-facto standard tools for this task: SEQUEST and Mascot.

View Article and Find Full Text PDF

We trained Segway, a dynamic Bayesian network method, simultaneously on chromatin data from multiple experiments, including positions of histone modifications, transcription-factor binding and open chromatin, all derived from a human chronic myeloid leukemia cell line. In an unsupervised fashion, we identified patterns associated with transcription start sites, gene ends, enhancers, transcriptional regulator CTCF-binding regions and repressed regions. Software and genome browser tracks are at http://noble.

View Article and Find Full Text PDF

DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published methods.

View Article and Find Full Text PDF

Motivation: A global map of transcription factor binding sites (TFBSs) is critical to understanding gene regulation and genome function. DNaseI digestion of chromatin coupled with massively parallel sequencing (digital genomic footprinting) enables the identification of protein-binding footprints with high resolution on a genome-wide scale. However, accurately inferring the locations of these footprints remains a challenging computational problem.

View Article and Find Full Text PDF

Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a signal peptide submodel with a transmembrane submodel.

View Article and Find Full Text PDF

Motivation: Tandem mass spectrometry (MS/MS) is an indispensable technology for identification of proteins from complex mixtures. Proteins are digested to peptides that are then identified by their fragmentation patterns in the mass spectrometer. Thus, at its core, MS/MS protein identification relies on the relative predictability of peptide fragmentation.

View Article and Find Full Text PDF

Purpose: Mouse control has become a crucial aspect of many modern day computer interactions. This poses a challenge for individuals with motor impairments or those whose use of hands is restricted due to situational constraints. We present a system called the Vocal Joystick which allows the user to continuously control the mouse cursor by varying vocal parameters such as vowel quality, loudness and pitch.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: 8192

Message: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated

Filename: helpers/my_audit_helper.php

Line Number: 8900

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 8900
Function: str_replace

File: /var/www/html/application/controllers/Author.php
Line: 786
Function: formatAIDetailSummary

File: /var/www/html/application/controllers/Author.php
Line: 685
Function: pubMedSearchtoAuthorResults_array

File: /var/www/html/application/controllers/Author.php
Line: 122
Function: pubMedAuthorSearch_array

File: /var/www/html/index.php
Line: 316
Function: require_once