Publications by authors named "Jef Wagner"

Many spherical viruses encapsulate their genomes in protein shells with icosahedral symmetry. This process is spontaneous and driven by electrostatic interactions between positive domains on the virus coat proteins and the negative genomes. We model the effect of the nonuniform icosahedral charge distribution from the protein shell instead using a mean-field theory.

View Article and Find Full Text PDF
Article Synopsis
  • HIV-1 virions start as immature particles with Gag polyproteins that mature into infectious particles through processing by the viral protease.
  • Two main models explain this maturation: one involves disassembly and reassembly, and the other involves a more direct, non-diffusive process.
  • Experiments and computer simulations indicate that HIV-1 maturation likely combines elements from both models, suggesting a complex sequential process for capsid formation.
View Article and Find Full Text PDF

Many single-stranded (ss) ribonucleic acid (RNA) viruses self-assemble from capsid protein subunits and the nucleic acid to form an infectious virion. It is believed that the electrostatic interactions between the negatively charged RNA and the positively charged viral capsid proteins drive the encapsidation, although there is growing evidence that the sequence of the viral RNA also plays a role in packaging. In particular, the sequence will determine the possible secondary structures that the ssRNA will take in solution.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) capsid proteins spontaneously assemble around the genome into a protective protein shell called the capsid, which can take on a variety of shapes broadly classified as conical, cylindrical, and irregular. The majority of capsids seen in in vivo studies are conical in shape, while in vitro experiments have shown a preference for cylindrical capsids. The factors involved in the selection of the unique shape of HIV capsids are not well understood, and in particular the impact of RNA on the formation of the capsid is not known.

View Article and Find Full Text PDF

The behavior of annealed branched polymers near adsorbing surfaces plays a fundamental role in many biological and industrial processes. Most importantly single stranded RNA in solution tends to fold up and self-bind to form a highly branched structure. Using a mean field theory, we both perturbatively and numerically examine the adsorption of branched polymers on surfaces of several different geometries in a good solvent.

View Article and Find Full Text PDF

Highly symmetric nanoshells are found in many biological systems, such as clathrin cages and viral shells. Many studies have shown that symmetric shells appear in nature as a result of the free-energy minimization of a generic interaction between their constituent subunits. We examine the physical basis for the formation of symmetric shells, and by using a minimal model, demonstrate that these structures can readily grow from the irreversible addition of identical subunits.

View Article and Find Full Text PDF

Simple RNA viruses efficiently encapsulate their genome into a nano-sized protein shell: the capsid. Spontaneous coassembly of the genome and the capsid proteins is driven predominantly by electrostatic interactions between the negatively charged RNA and the positively charged inner capsid wall. Using field theoretic formulation we show that the inherently branched RNA secondary structure allows viruses to maximize the amount of encapsulated genome and make assembly more efficient, allowing viral RNAs to out-compete cellular RNAs during replication in infected host cells.

View Article and Find Full Text PDF

We develop the scattering formalism to calculate the interaction between colloidal particles trapped at a fluid interface. Since, in addition to the interface, the colloids may also fluctuate in this system, we implement the fluctuation of the boundaries into the scattering formalism and investigate how the interaction between colloids is modified by their fluctuations. This general method can be applied to any number of colloids with various geometries at an interface.

View Article and Find Full Text PDF

We present a new method based on the scattering technique to investigate fluctuation-induced forces at a fluid interface. The scattering approach, well suited to the study of many-body systems of arbitrary geometries, is augmented to include boundary fluctuations. Using this method, we study the deviation of the total fluctuation-induced interaction from the sum of pairwise energies for three colloidal particles.

View Article and Find Full Text PDF

In earlier papers, we have applied multiple-scattering techniques to calculate Casimir forces due to scalar fields between different bodies described by delta function potentials. When the coupling to the potentials became weak, closed-form results were obtained. We simplify this weak-coupling technique and apply it to the case of tenuous dielectric bodies, in which case the method involves the summation of van der Waals (Casimir-Polder) interactions.

View Article and Find Full Text PDF