Purpose: An inherited mutation in KRAS (LCS6-variant or rs61764370) results in altered control of the KRAS oncogene. We studied this biomarker's correlation to anti-EGFR monoclonal antibody (mAb) therapy response in patients with metastatic colorectal cancer.
Experimental Design: LCS6-variant and KRAS/BRAF mutational status was determined in 512 patients with metastatic colorectal cancer treated with salvage anti-EGFR mAb therapy, and findings correlated with outcome.
Objective: We aimed to better clarify the role of germline variants of the FCG2 receptor, FCGR2A-H131R and FCGR3A-V158F, on the therapeutic efficacy of cetuximab in metastatic colorectal cancer (mCRC). A large cohort with sufficient statistical power was assembled.
Design: To show a HR advantage of 0.
Background: Following the discovery that mutant KRAS is associated with resistance to anti-epidermal growth factor receptor (EGFR) antibodies, the tumours of patients with metastatic colorectal cancer are now profiled for seven KRAS mutations before receiving cetuximab or panitumumab. However, most patients with KRAS wild-type tumours still do not respond. We studied the effect of other downstream mutations on the efficacy of cetuximab in, to our knowledge, the largest cohort to date of patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab plus chemotherapy in the pre-KRAS selection era.
View Article and Find Full Text PDFBackground: Activity of cetuximab, a chimeric monoclonal antibody targeting the epidermal growth factor receptor, is largely attributed to its direct antiproliferative and proapoptotic effects. Antibody-dependent cell-mediated cytotoxicity (ADCC) could be another possible mechanism of cetuximab antitumor effects and its specific contribution on the clinical activity of cetuximab is unknown.
Methods: We assessed immune cells infiltrate (CD56, CD68, CD3, CD4, CD8, Foxp3) in the primary tumor of metastatic colorectal cancer (mCRC) patients treated with a first-line cetuximab-based chemotherapy in the framework of prospective trials (treatment group) and in a matched group of mCRC patients who received the same chemotherapy regimen without cetuximab (control group).
Purpose: To study the power of the epidermal growth factor receptor (EGFR) epiregulin (EREG) and amphiregulin (AREG) ligands' expression in primary tumors to predict the outcome in patients with chemorefractory metastatic colorectal cancer (cmCRC) treated with the combination of cetuximab and irinotecan.
Patients And Methods: Gene expression measurements and KRAS mutation analysis were performed on archival formalin-fixed paraffin-embedded primary tumors of 220 cmCRC patients. Response was measured using RECIST (Response Evaluation Criteria in Solid Tumors) criteria.
Rapidly growing insight into the molecular biology of colorectal cancer has led to high hopes for the identification of molecular markers to be used in optimized and tailored treatment regimens. However, many of the published data on gene-specific biomarkers are contradictory in their findings, and no tests are currently used in clinical practice, with the exception of microsatellite instability (MSI) and guanylyl cyclase C (GCC) testing in the adjuvant setting, and in Europe KRAS mutation testing is used in the setting of epidermal growth factor receptor (EGFR)-targeted therapy for metastatic disease. There are many reasons for the failure of the initial marker hypothesis-driven approach.
View Article and Find Full Text PDFPurpose: It has been reported that activating KRAS mutations negatively affect response to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies in metastatic colorectal cancer. The mutation status of signaling molecules downstream of the EGFR target is thus crucial to predict clinical benefit to EGFR-targeted therapies. Other mechanisms of resistance to EGFR inhibitors could involve activating mutations of the other main EGFR effector pathway, i.
View Article and Find Full Text PDFPurpose: To evaluate the usefulness and the pitfalls inherent to the assessment of the epidermal growth factor receptor (EGFR) gene copy number (GCN) by fluorescence in situ hybridization (FISH) for outcome prediction to cetuximab in metastatic colorectal cancer. The value of testing KRAS mutation status, in addition to EGFR GCN, was also explored.
Experimental Design: FISH analysis of 87 metastatic colorectal cancer patients treated with cetuximab was done, recording individual GCN per cell and using different samples per tumor.