Publications by authors named "Jeeyoon Jeong"

Nanoconfined waters exhibit low static permittivity mainly due to interfacial effects that span about one nanometer. The characteristic length scale may be much longer in the terahertz (THz) regime where long-range collective dynamics occur; however, the THz dynamics have been largely unexplored because of the lack of a robust platform. Here, we use metallic loop nanogaps to sharply enhance light-matter interactions and precisely measure real and imaginary THz refractive indices of nanoconfined water at gap widths ranging from 2 to 20 nanometers, spanning mostly interfacial waters all the way to quasi-bulk waters.

View Article and Find Full Text PDF

The dynamic interplay between Artificial Intelligence (AI) adoption in modern organizations and its implications for employee well-being presents a paramount area of academic exploration. Within the context of rapid technological advancements, AI's promise to revolutionize operational efficiency juxtaposes challenges relating to job stress and employee health. This study explores the nuanced effects of Artificial Intelligence (AI) adoption on employee physical health within organizational settings, investigating the potential mediating role of job stress and the moderating influence of coaching leadership.

View Article and Find Full Text PDF

Metallic nanogaps have emerged as a versatile platform for realizing ultrastrong coupling in terahertz frequencies. Increasing the coupling strength generally involved reducing the gap width to minimize the mode volume, which presents challenges in fabrication and efficient material coupling. Here, we propose employing terahertz nanoslots, which can efficiently squeeze the mode volume in an extra dimension alongside the gap width.

View Article and Find Full Text PDF

As the global economy deteriorates because of the great shocks such as COVID-19 pandemic and wars among nations, the business environment is suffered from uncertainty and risk. To deal with it, several firms have attempted to maximize its efficiency downsizing and restructuring to diminish costs. Thus, the degree of anxiety is increased among employees who worry about the loss of their job.

View Article and Find Full Text PDF

As the global economic situation deteriorates due to the prolonged COVID-19 pandemic, the business environment is plagued by uncertainty and risk. To address this, many organizations have sought to optimize efficiency, especially by downsizing and restructuring, to reduce costs. This causes anxiety among employees, who worry about whether they will be fired.

View Article and Find Full Text PDF

Electromagnetic absorbers based on ultra-thin metallic film are desirable for many applications such as plasmonics, metamaterials, and long-wavelength detectors. A metallic film will achieve a maximum 50% of electromagnetic wave absorption, frequency independent, at a thickness defined by its conductivity, typically in the sub-Angstrom range for good metals if bulk conductivity is maintained throughout. This makes it extremely difficult to obtain substantial absorption from thin metal films, in contrast to 2D materials such as graphene.

View Article and Find Full Text PDF

Critical factors for terahertz polarizers include broadband operation, high transmittance, and a good extinction ratio. In this paper, using a 5 nm-wide metallic slit array with a 200 nm periodicity as a wire grid polarizer, we achieved over 95% transmittance with an average extinction ratio of 40 dB, over the entire spectrum as defined by the terahertz time-domain spectroscopy (0.4 ∼ 2 THz).

View Article and Find Full Text PDF

Metallic nanogaps are being widely used for sensing applications, owing to their ability to confine and enhance electromagnetic field within the hot spots. Since the enhanced field does not confine itself perfectly within the gap, however, fringe fields well away from the gap are of potential use as well in real systems. Here, we extend the concept of near field absorption enhancement by quantitatively analyzing terahertz absorption behavior of water molecules outside the hot spots of sub-20 nm-wide, ∼100 μm-long nanotrenches.

View Article and Find Full Text PDF

A well-designed narrow gap between noble metal nanostructures plays a prominent role in surface-enhanced Raman scattering (SERS) to concentrate electromagnetic fields at the local point, called a "hot spot". However, SERS-active substrate fabrication remains a substantial hurdle due to the high process cost and the difficulty of engineering efficient plasmonic hot spots at the target area. In this study, we demonstrate a simple photolithographic method for generating ultrasensitive SERS hot spots at desired positions.

View Article and Find Full Text PDF

With recent advances in nanofabrication technology, various metallic gap structures with gap widths reaching a few to sub-nanometer, and even 'zero-nanometer', have been realized. At such regime, metallic gaps not only exhibit strong electromagnetic field confinement and enhancement, but also incorporate various quantum phenomena in a macroscopic scale, finding applications in ultrasensitive detection using nanosystems, enhancement of light-matter interactions in low-dimensional materials, and ultralow-power manipulation of electromagnetic waves, etc. Therefore, moving beyond nanometer to 'zero-nanometer' can greatly diversify applications of metallic gaps and may open the field of dynamic 'gaptronics.

View Article and Find Full Text PDF

Recent advances in emerging atomically thin transition metal dichalcogenide semiconductors with strong light-matter interactions and tunable optical properties provide novel approaches for realizing new material functionalities. Coupling two-dimensional semiconductors with all-dielectric resonant nanostructures represents an especially attractive opportunity for manipulating optical properties in both the near-field and far-field regimes. Here, by integrating single-layer WSe and titanium oxide (TiO) dielectric metasurfaces with toroidal resonances, we realized robust exciton emission enhancement over 1 order of magnitude at both room and low temperatures.

View Article and Find Full Text PDF

A metallic nano-trench is a unique optical structure capable of ultrasensitive detection of molecules, active modulation as well as potential electrochemical applications. Recently, wet-etching the dielectrics of metal-insulator-metal structures has emerged as a reliable method of creating optically active metallic nano-trenches with a gap width of 10 nm or less, opening a new venue for studying the dynamics of nanoconfined molecules. Yet, the high surface tension of water in the process of drying leaves the nano-trenches vulnerable to collapsing, limiting the achievable width to no less than 5 nm.

View Article and Find Full Text PDF

Ohmic absorption of light is an indication of a light-matter interaction within metals, where many interesting phenomena and application potentials can be found. To realize the ohmic absorption of light at long wavelengths, where metals are highly reflective, one can use a metamaterial absorber design to concentrate the electromagnetic field within a thin metal film. This concept has enabled thinning of perfect absorbers from a quarter-wave thickness to several tens of nanometers, greatly improving the utility and efficiency of light-metal interactions.

View Article and Find Full Text PDF

Various material properties change considerably when material is thinned down to nanometer thicknesses. Accordingly, researchers have been trying to obtain homogeneous thin films with nanometer thickness but depositing homogeneous few nanometers thick gold film is challenging as it tends to form islands rather than homogenous film. Recently, studies have revealed that treating the substrate with an organic buffer, (3-mercaptopropyl) trimethoxysilane (MPTMS) enables deposition of ultra-thin gold film having thickness as low as 5 nm.

View Article and Find Full Text PDF

Plasmon-mediated polymerization has been intensively studied for various applications including nanolithography, near-field mapping, and selective functionalization. However, these studies have been limited from the near-infrared to the ultraviolet regime. Here, we report a resist polymerization using intense terahertz pulses and various nanoantennas.

View Article and Find Full Text PDF

Slot antennas have been exploited as important building blocks of optical magnetism because their radiations are invoked by the magnetic fields along the axes, as vectorial Babinet principle predicts. However, optical magnetism of a few-nanometer-width slit, for which fascinating applications are found due to the colossal field enhancement but Babinet principle fails due to the nonnegligible thickness, has not been investigated. In this paper, we demonstrated that the magnetic field plays a dominant role in light transmission through a 5-nm slit on a 150-nm-thick gold film.

View Article and Find Full Text PDF

We present a new and versatile technique of self-assembly lithography to fabricate a large scale Cadmium selenide quantum dots-silver nanogap metamaterials. After optical and electron microscopic characterizations of the metamaterials, we performed spatially resolved photoluminescence transmission measurements. We obtained highly quenched photoluminescence spectra compared to those from bare quantum dots film.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionps6g0r1h301lkv92n40qnleujarv32ps): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once