Allergy Asthma Immunol Res
November 2024
Gene therapy holds great therapeutic potential. Yet, controlling cargo expression in single cells is limited due to the variability of delivery methods. We implement an incoherent feedforward loop based on proteolytic cleavage of CRISPR-Cas activation or inhibition systems to reduce gene expression variability against the variability of vector delivery.
View Article and Find Full Text PDFChemotherapy-induced alopecia (CIA) is a common and debilitating condition in children, with limited research on its characteristics and treatment. Therefore, this study aims to describe the characteristics of pediatric patients with CIA and the treatment outcomes of topical minoxidil and L-cystine, medicinal yeast, and pantothenic acid complex-based dietary supplements (CYP). This retrospective cohort study analyzed data from patients who underwent high-dose conditioning chemotherapy followed by hematopoietic stem cell transplantation and were treated with either topical minoxidil or CYP for CIA between January 2011 and January 2022.
View Article and Find Full Text PDFBackground: Differences in clinical efficacy based on the fluence of fractional picosecond laser treatment for acne scars are unknown.
Objective: To compare the efficacy and safety of low-fluence versus high-fluence fractional picosecond Nd:YAG 1064-nm laser treatment in acne scar patients.
Methods: In this 12-week, investigator-blinded, randomized, split-face study, 25 patients with moderate-to-severe acne scars received three sessions of high-fluence laser treatment (1.
To program intercellular communication for biomedicine, it is crucial to regulate the secretion and surface display of signaling proteins. If such regulations are at the protein level, there are additional advantages, including compact delivery and direct interactions with endogenous signaling pathways. Here we create a modular, generalizable design called Retained Endoplasmic Cleavable Secretion (RELEASE), with engineered proteins retained in the endoplasmic reticulum and displayed/secreted in response to specific proteases.
View Article and Find Full Text PDFTo understand the underlying mechanisms of progressive neurophysiological phenomena, neural interfaces should interact bi-directionally with brain circuits over extended periods of time. However, such interfaces remain limited by the foreign body response that stems from the chemo-mechanical mismatch between the probes and the neural tissues. To address this challenge, we developed a multifunctional sensing and actuation platform consisting of multimaterial fibers intimately integrated within a soft hydrogel matrix mimicking the brain tissue.
View Article and Find Full Text PDFStudies of neural pathways that contribute to loss and recovery of function following paralyzing spinal cord injury require devices for modulating and recording electrophysiological activity in specific neurons. These devices must be sufficiently flexible to match the low elastic modulus of neural tissue and to withstand repeated strains experienced by the spinal cord during normal movement. We report flexible, stretchable probes consisting of thermally drawn polymer fibers coated with micrometer-thick conductive meshes of silver nanowires.
View Article and Find Full Text PDFOptogenetic interrogation of neural pathways relies on delivery of light-sensitive opsins into tissue and subsequent optical illumination and electrical recording from the regions of interest. Despite the recent development of multifunctional neural probes, integration of these modalities in a single biocompatible platform remains a challenge. We developed a device composed of an optical waveguide, six electrodes and two microfluidic channels produced via fiber drawing.
View Article and Find Full Text PDF