Redox-active tetraoxolene ligands such as 1,4-dihydroxybenzoquinone provide access to a diversity of metal-organic architectures, many of which display interesting magnetic behavior and high electrical conductivity. Here, we take a closer look at how structure dictates physical properties in a series of 1D iron-tetraoxolene chains. Using a diphenyl-derivatized tetraoxolene ligand (HPhdhbq), we show that the steric profile of the coordinating solvent controls whether linear or helical chains are exclusively formed.
View Article and Find Full Text PDFMicromachines (Basel)
April 2020
Recently, the ion concentration polarization (ICP) phenomenon has been actively utilized for low abundance biomolecular preconcentration applications. Since ICP significantly rearranges the ion distribution near a permselective membrane, its detailed investigation should be conducted for developing efficient platforms. In particular, proton transport through the membrane critically affects the pH of sample solutions so that continuous monitoring or batch measurement of pH is the priority task to be carried out.
View Article and Find Full Text PDF