Avian influenza active surveillance was conducted in Bangladesh from January 2022 to November 2023 in live-poultry markets (LPMs) and Tanguar Haor wetlands. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) A(H9N2) and clade 2.3.
View Article and Find Full Text PDFOutbreaks in the US of highly pathogenic avian influenza virus (H5N1) in dairy cows have been occurring for months creating new possibilities for direct contact between the virus and humans. Eisfeld examined the pathogenicity and transmissibility of a bovine HPAI H5N1 virus isolated from New Mexico in a series of and assays. They found the virus has a dual human- and avian virus-like receptor-binding specificity as measured in a solid phase glycan binding assay.
View Article and Find Full Text PDFHighly pathogenic avian influenza (HPAI) viruses have spread at an unprecedented scale, leading to mass mortalities in birds and mammals. In 2023, a transatlantic incursion of HPAI A(H5N5) viruses into North America was detected, followed shortly thereafter by a mammalian detection. As these A(H5N5) viruses were similar to contemporary viruses described in Eurasia, the transatlantic spread of A(H5N5) viruses was most likely facilitated by pelagic seabirds.
View Article and Find Full Text PDFmRNA lipid nanoparticle (LNP) vaccines would be useful during an influenza virus pandemic since they can be produced rapidly and do not require the generation of egg-adapted vaccine seed stocks. Highly pathogenic avian influenza viruses from H5 clade 2.3.
View Article and Find Full Text PDFRapid evolution of highly pathogenic avian influenza viruses (HPAIVs) is driven by antigenic drift but also by reassortment, which might result in robust replication in and transmission to mammals. Recently, spillover of clade 2.3.
View Article and Find Full Text PDFIn 2017, a novel influenza A virus (IAV) was isolated from an Egyptian fruit bat. In contrast to other bat influenza viruses, the virus was related to avian A(H9N2) viruses and was probably the result of a bird-to-bat transmission event. To determine the cross-species spill-over potential, we biologically characterize features of A/bat/Egypt/381OP/2017(H9N2).
View Article and Find Full Text PDFHighly pathogenic avian influenza A(H5N1) viruses of clade 2.3.4.
View Article and Find Full Text PDFPrior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression.
View Article and Find Full Text PDFWhile SARS-CoV-2 has sporadically infected a wide range of animal species worldwide1, the virus has been repeatedly and frequently detected in white-tailed deer in North America2â€"7. The zoonotic origins of this pandemic virus highlight the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022.
View Article and Find Full Text PDFBackground: The Animal Biosafety Level 3 Enhanced (ABSL-3+) laboratory at St. Jude Children's Research Hospital has a long history of influenza pandemic preparedness. The emergence of SARS-CoV-2 and subsequent expansion into a pandemic has put new and unanticipated demands on laboratory operations since April 2020.
View Article and Find Full Text PDFThe novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified in December of 2019 and is responsible for millions of infections and deaths across the globe. Vaccination against SARS-CoV-2 has proven effective to contain the spread of the virus and reduce disease. The production and distribution of these vaccines occurred at a remarkable pace, largely through the employment of the novel mRNA platform.
View Article and Find Full Text PDFBackground: Influenza A/H5N8 viruses infect poultry and wild birds in many countries. In 2021, the first human A/H5N8 cases were reported.
Methods: We conducted a phase I, cohort-randomized, double-blind, controlled trial of inactivated influenza A/H5N8 vaccine (clade 2.
Signal Transduct Target Ther
December 2022
The high effectiveness of the third dose of BNT162b2 in healthy adolescents against Omicron BA.1 has been reported in some studies, but immune responses conferring this protection are not yet elucidated. In this analysis, our study (NCT04800133) aims to evaluate the humoral and cellular responses against wild-type and Omicron (BA.
View Article and Find Full Text PDFIn August 2021, we detected highly pathogenic avian influenza A(H5N1) clade 2.3.4.
View Article and Find Full Text PDFA (H9N2) avian influenza A viruses were first detected in Uganda in 2017 and have since established themselves in live bird markets. The aim of this study was to establish the subsequent genetic evolution of H9N2 viruses in Uganda. Cloacal samples collected from live bird market stalls in Kampala from 2017 to 2019 were screened by RT-PCR for influenza A virus and H9N2 viruses were isolated in embryonated eggs.
View Article and Find Full Text PDFIn Egypt, the endemicity of avian influenza viruses is a serious concern. Since 2016, several outbreaks of H5N8 have been recorded among domestic poultry in various areas of the country. Active surveillance of domestic poultry across several governorates in Egypt from 2017 to 2021 detected at least six genotypes of Highly Pathogenic Avian Influenza (HPAI) H5N8 viruses with evidence of partial or complete annual replacement of dominant strains.
View Article and Find Full Text PDF