Publications by authors named "Jeevan B Gc"

The optimal interaction of drugs with plasma membranes and membranes of subcellular organelles is a prerequisite for desirable pharmacology. Importantly, for drugs targeting the transmembrane lipid-facing sites of integral membrane proteins, the relative affinity of a drug to the bilayer lipids compared to the surrounding aqueous phase affects the partitioning, access, and binding of the drug to the target site. Molecular dynamics (MD) simulations, including enhanced sampling techniques such as steered MD, umbrella sampling (US), and metadynamics, offer valuable insights into the interactions of drugs with the membrane lipids and water in atomistic detail.

View Article and Find Full Text PDF

A growing body of evidence suggests that oxysterols such as 25-hydroxycholesterol (25HC) are biologically active and involved in many physiological and pathological processes. Our previous study demonstrated that 25HC induces an innate immune response during viral infections by activating the integrin-focal adhesion kinase (FAK) pathway. 25HC produced the proinflammatory response by binding directly to integrins at a novel binding site (site II) and triggering the production of proinflammatory mediators such as tumor necrosis factor-α (TNF) and interleukin-6 (IL-6).

View Article and Find Full Text PDF

In mammalian cells, all-trans farnesol, a 15-carbon isoprenol, is a product of the mevalonate pathway. It is the natural substrate of alcohol dehydrogenase and a substrate for CYP2E1, two enzymes implicated in ethanol metabolism. Studies have shown that farnesol is present in the human brain and inhibits voltage-gated Ca channels at much lower concentrations than ethanol.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy causing ventricular tachycardia following adrenergic stimulation. Pathogenic variants in RYR2-encoded ryanodine receptor 2 (RYR2) cause CPVT1 and cluster into domains I-IV, with the most N-terminal domain involving residues 77-466. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated for RYR2-F13L, -L14P, -R15P, and -R176Q variants.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) depletion/deletions syndromes (MDDS) encompass a clinically and etiologically heterogenous group of mitochondrial disorders caused by impaired mtDNA maintenance. Among the most frequent causes of MDDS are defects in nucleoside/nucleotide metabolism, which is critical for synthesis and homeostasis of the deoxynucleoside triphosphate (dNTP) substrates of mtDNA replication. A central enzyme for generating dNTPs is ribonucleotide reductase, a critical mediator of de novo nucleotide synthesis composed of catalytic RRM1 subunits in complex with RRM2 or p53R2.

View Article and Find Full Text PDF

The drugs salmeterol, formoterol, and salbutamol constitute the frontline treatment of asthma and other chronic pulmonary diseases. These drugs activate the 2-adrenergic receptors (2-AR), a class A G protein-coupled receptor (GPCR), and differ significantly in their clinical onset and duration of actions. According to the microkinetic model, the long duration of action of salmeterol and formoterol compared with salbutamol were attributed, at least in part, to their high lipophilicity and increased local concentrations in the membrane near the receptor.

View Article and Find Full Text PDF

Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with -cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (K = 1.58 µM; Hill slope = 1.

View Article and Find Full Text PDF

Resolvins D1 and D2 (RvDs) are structural isomers and metabolites of docosahexaenoic acid, an omega-3 fatty acid, enzymatically produced in our body in response to acute inflammation or microbial invasion. Resolvins have been shown to play an essential role in the resolution of inflammation, tissue repair, and return to homeostasis and thus are actively pursued as potential therapeutics in treating inflammatory disorders and infectious diseases. However, effective delivery of RvDs continues to be a challenging task.

View Article and Find Full Text PDF

The ligand-binding sites of many G protein-coupled receptors (GPCRs) are situated around and deeply embedded within the central pocket formed by their seven transmembrane-spanning -helical domains. Generally, these binding sites are assumed accessible to endogenous ligands from the aqueous phase. Recent advances in the structural biology of GPCRs, along with biophysical and computational studies, suggest that amphiphilic and lipophilic molecules may gain access to these receptors by first partitioning into the membrane and then reaching the binding site via lateral diffusion through the lipid bilayer.

View Article and Find Full Text PDF

Integrins are components of cell-matrix adhesions, and function as scaffolds for various signal transduction pathways. So far no lipid ligand for integrin has been reported. Here we show that a lipid, oxysterol 25-hydroxycholesterol (25HC), directly binds to α5β1 and αvβ3 integrins to activate integrin-focal adhesion kinase (FAK) signaling.

View Article and Find Full Text PDF

Ebola virus (EBOV) is a filamentous lipid-enveloped virus that causes hemorrhagic fever with a high fatality rate. Viral protein 40 (VP40) is the major EBOV matrix protein and regulates viral budding from the plasma membrane. VP40 is a transformer/morpheein that can structurally rearrange its native homodimer into either a hexameric filament that facilitates viral budding or an RNA-binding octameric ring that regulates viral transcription.

View Article and Find Full Text PDF

Ebola virus infections cause hemorrhagic fever that often results in very high fatality rates. In addition to exploring vaccines, development of drugs is also essential for treating the disease and preventing the spread of the infection. The Ebola virus matrix protein VP40 exists in various conformational and oligomeric forms and is a potential pharmacological target for disrupting the virus life-cycle.

View Article and Find Full Text PDF

The Ebola virus matrix protein VP40 is a major structural protein that provides the scaffolding for new Ebola virus particles. For this, VP40 is first trafficked to the lower leaflet of the plasma membrane (PM) in its dimeric form. Once associated with the PM, the VP40 dimers undergo structural rearrangements and oligomerize into hexamers and filaments that make up the virus matrix.

View Article and Find Full Text PDF

Filovirus infections cause hemorrhagic fever in humans and non-human primates that often results in high fatality rates. The Marburg virus is a lipid-enveloped virus from the Filoviridae family and is closely related to the Ebola virus. The viral matrix layer underneath the lipid envelope is formed by the matrix protein VP40 (VP40), which is also involved in other functions during the viral life-cycle.

View Article and Find Full Text PDF

The Ebola virus is a lipid-enveloped virus that obtains its lipid coat from the plasma membrane of the host cell it infects during the budding process. The Ebola virus protein VP40 localizes to the inner leaflet of the plasma membrane and forms the viral matrix, which provides the major structure for the Ebola virus particles. VP40 is initially a dimer that rearranges to a hexameric structure that mediates budding.

View Article and Find Full Text PDF

The Ebola virus protein VP40 is a transformer protein that possesses an extraordinary ability to accomplish multiple functions by transforming into various oligomeric conformations. The disengagement of the C-terminal domain (CTD) from the N-terminal domain (NTD) is a crucial step in the conformational transformations of VP40 from the dimeric form to the hexameric form or octameric ring structure. Here, we use various molecular dynamics (MD) simulations to investigate the dynamics of the VP40 protein and the roles of interdomain interactions that are important for the domain-domain association and dissociation, and report on experimental results of the behavior of mutant variants of VP40.

View Article and Find Full Text PDF

The transcription antiterminator RfaH has been shown to undergo major structural rearrangements to perform multiple functions. Structural determination of the C-terminal domain (CTD) of RfaH showed that it can exist as either an α-helix bundle when interfacing with the N-terminal domain (NTD) or as a β-barrel conformation when it is not interfacing with the NTD. In this paper, we investigate the full RfaH with both CTD and NTD using a variety of all-atom molecular dynamics (MD) simulation techniques, including targeted molecular dynamics, steered molecular dynamics, and adaptive biasing force, and calculate potentials of mean force.

View Article and Find Full Text PDF

The C-terminal domain (CTD) of the transcription antiterminator RfaH folds to an α-helix bundle when it interacts with its N-terminal domain (NTD) but it undergoes an all-α to all-β conformational transformation when it does not interact with the NTD. The RfaH-CTD in the all-α topology is involved in regulating transcription whereas in the all-β topology it is involved in stimulating translation by recruiting a ribosome to an mRNA. Because the conformational transformation in RfaH-CTD gives it a different function, it is labeled as a transformer protein, a class that may eventually include many other functional proteins.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: