Publications by authors named "Jee-Won Sul"

Article Synopsis
  • Oxidative stress is a major factor causing neuron death in brain injuries like epilepsy, trauma, and stroke, with zinc (Zn) and calcium (Ca) levels playing significant roles.
  • Research shows that exposing cortical neurons to oxidative stress leads to a Zn-triggered influx of Ca, contributing to neuronal death, which can be mitigated by the cyclin-dependent kinase inhibitor NU6027.
  • TRPC5 has been identified as a key player in this process, as NU6027 inhibits its activity, offering a potential therapeutic target for preventing oxidative neuronal damage during seizures.
View Article and Find Full Text PDF

In glaucoma, retinal ganglion cells (RGCs) are exposed to ischemic stress with elevation of the intraocular pressure and are subsequently lost. Necroptosis, a type of regulated necrosis, is known to play a pivotal role in this loss. We observed that receptor-interacting protein kinase 1 (RIPK1), the key player of necroptosis, was activated by diverse ischemic stresses, including TCZ, chemical hypoxia (CH), and oxygen glucose deprivation (OGD).

View Article and Find Full Text PDF

Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect.

View Article and Find Full Text PDF

Background: PTEN deletion, mutation or reduced expression occurs in 63% of metastatic prostate tumors, resulting in the activation of PI3K and its downstream targets, AKT and mTOR. Inhibition of the PI3K pathway results in upregulation of the MAPK pathway. Therefore, co-administration of inhibitors of both pathways, GSK2126458 as a dual PI3K/mTOR inhibitor, and AZD6244 as a MEK inhibitor, is able to overcome resistance and increase anti-tumor efficacy.

View Article and Find Full Text PDF

This study reports the physical and functional interplay between Fas-associated factor 1 (FAF1), a death-promoting protein, and parkin, a key susceptibility protein for Parkinson's disease (PD). We found that parkin acts as an E3 ubiquitin ligase to ubiquitinate FAF1 both in vitro and at cellular level, identifying FAF1 as a direct substrate of parkin. The loss of parkin function due to PD-linked mutations was found to disrupt the ubiquitination and degradation of FAF1, resulting in elevated FAF1 expression in SH-SY5Y cells.

View Article and Find Full Text PDF

This study reports that Aurora-A (Aur-A) phosphorylates Fas-associated factor-1 (FAF1) at Ser-289 and Ser-291. Forced expression of a FAF1 mutant mimicking phosphorylation at Ser-289 and Ser-291 (FAF1 DD), but not phosphorylation-deficient FAF1 (FAF1 AA), reduced Aur-A expression. However, transfection of FAF1 DD failed to reduce Aur-A expression in the presence of MG132 and MG115, indicating that this decrease is proteasome-mediated.

View Article and Find Full Text PDF