Publications by authors named "Jee-Hyun Choi"

Responding to threats in the real world demands a sophisticated orchestration of freeze and flight behaviors dynamically modulated by the neural activity. While the medial prefrontal cortex-basolateral amygdala (mPFC-BLA) network is known to play a pivotal role in coordinating these responses, the mechanisms underlying its population dynamics remain vague. As traditional Pavlovian fear conditioning models fall short in encapsulating the breadth of natural escape behaviors, we introduce a novel dataset to bridge this gap, capturing the defensive strategies of mice against a spider robot in a natural-like environment.

View Article and Find Full Text PDF

Although mice are social, multiple animals' neural activities are rarely explored. To characterise the neural activities during multi-brain interaction, we simultaneously recorded local field potentials (LFP) in the prefrontal cortex of four mice. The social context and locomotive states predominately modulated the entire LFP structure.

View Article and Find Full Text PDF

Background: In vivo two-photon imaging is a reliable method with high spatial resolution that allows observation of individual neuron and dendritic activity longitudinally. Neurons in local brain regions can be influenced by global brain states such as levels of arousal and attention that change over relatively short time scales, such as minutes. As such, the scientific rigor of investigating regional neuronal activities could be enhanced by considering the global brain state.

View Article and Find Full Text PDF

Background: Visuospatial memory impairment is a common symptom of Alzheimer's disease; however, conventional visuospatial memory tests are insufficient to fully reflect visuospatial memory impairment in daily life.

Methods: To address patients' difficulties in locating and recalling misplaced objects, we introduced a novel visuospatial memory test, the Hidden Objects Test (HOT), conducted in a virtual environment. We categorized HOT scores into prospective memory, item free-recall, place free-recall, item recognition, and place-item matching scores.

View Article and Find Full Text PDF

Chronic pain is highly prevalent and is linked to a broad range of comorbidities, including sleep disorders. Epidemiological and clinical evidence suggests that chronic sleep disruption (CSD) leads to heightened pain sensitivity, referred to as CSD-induced hyperalgesia. However, the underlying mechanisms are unclear.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) are involved in the regulation of defensive behavior under threat, but their engagement in flexible behavior shifts remains unclear. Here, we report the oscillatory activities of mPFC-BLA circuit in reaction to a naturalistic threat, created by a predatory robot in mice. Specifically, we found dynamic frequency tuning among two different theta rhythms (~5 or ~10 Hz) was accompanied by agile changes of two different defensive behaviors (freeze-or-flight).

View Article and Find Full Text PDF

. Recent event-based analyses of transient neural activities have characterized the oscillatory bursts as a neural signature that bridges dynamic neural states to cognition and behaviors. Following this insight, our study aimed to (1) compare the efficacy of common burst detection algorithms under varying signal-to-noise ratios and event durations using synthetic signals and (2) establish a strategic guideline for selecting the optimal algorithm for real datasets with undefined properties.

View Article and Find Full Text PDF

This work provides an EEG dataset collected from nine mice during the sleep deprivation (SD) paradigm for the sleep science community. It includes 9-day of continuous recording of the frontal and parietal EEG, accelerometer, and 2-hour of high-density EEG (HD-EEG) under SD and SD-free conditions. Eighteen hours of SD were conducted on 5 consecutive days.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) leads to long-term cognitive impairments, with an increased risk for neurodegenerative and psychiatric disorders. Among these various impairments, olfactory dysfunction is one of the most common symptoms in TBI patients. However, there are very few studies that show the association between olfactory dysfunction and repetitive TBI.

View Article and Find Full Text PDF

Social cognition requires neural processing, yet a unifying method linking particular brain activities and social behaviors is lacking. Here, we embedded mobile edge computing (MEC) and light emitting diodes (LEDs) on a neurotelemetry headstage, such that a particular neural event of interest is processed by the MEC and subsequently an LED is illuminated, allowing simultaneous temporospatial visualization of that neural event in multiple, socially interacting mice. As a proof of concept, we configured our system to illuminate an LED in response to gamma oscillations in the basolateral amygdala (BLA gamma) in freely moving mice.

View Article and Find Full Text PDF

We present high-density EEG datasets of auditory steady-state responses (ASSRs) recorded from the cortex of freely moving mice with or without optogenetic stimulation of basal forebrain parvalbumin (BF-PV) neurons, known as a subcortical hub circuit for the global workspace. The dataset of ASSRs without BF-PV stimulation (dataset 1) contains raw 36-channel EEG epochs of ASSRs elicited by 10, 20, 30, 40, and 50 Hz click trains and time stamps of stimulations. The dataset of ASSRs with BF-PV stimulation (dataset 2) contains raw 36-channel EEG epochs of 40-Hz ASSRs during BF-PV stimulation with latencies of 0, 6.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of genetic variants of CYFIP2, a protein linked to brain disorders like intellectual disability and epilepsy, using Cyfip2 heterozygous mice.
  • Researchers conducted various analyses, revealing that these mice displayed abnormal behaviors and increased neuron excitability, particularly in layer 5 of the prefrontal cortex (PFC).
  • Potential treatment with lithium was shown to normalize some of these neurobehavioral issues, shedding light on the underlying neuronal dysfunction associated with CYFIP2-related brain disorders.
View Article and Find Full Text PDF

Background: The Rey-Osterrieth Complex Figure Test (RCFT) is a neuropsychological test that is widely used to assess visual memory and visuoconstructional deficits in patients with cognitive impairment, including Alzheimer disease (AD). Patients with AD have an increased tendency for exhibiting extraordinary behaviors in the RCFT for selecting the drawing area, organizing the figure, and deciding the order of images, among other activities. However, the conventional scoring system based on pen and paper has a limited ability to reflect these detailed behaviors.

View Article and Find Full Text PDF

The amyloid-β (Aβ) oligomer is considered one of the major pathogens responsible for neuronal and synaptic loss in Alzheimer's disease (AD) brains. Although the neurotoxic mechanisms of Aβ have been widely investigated, experimental evidence for the direct linkage between neural signaling and cognitive impairments in association with peptide oligomers is lacking. Here, we conducted an auditory oddball paradigm utilizing an Aβ-infused Alzheimer's disease mouse model and interpreted the results based on Y-maze behavioral tests.

View Article and Find Full Text PDF

Compensatory elevation in NREM sleep EEG delta power has been typically observed following prolonged wakefulness and widely used as a sleep homeostasis indicator. However, recent evidence in human and rodent chronic sleep restriction (CSR) studies suggests that NREM delta power is not progressively increased despite of accumulated sleep loss over days. In addition, there has been little progress in understanding how sleep EEG in different brain regions responds to CSR.

View Article and Find Full Text PDF

θ-Band (4-12 Hz) activities in the frontal cortex have been thought to be a key mechanism of sustained attention and goal-related behaviors, forming a phase-coherent network with task-related sensory cortices for integrated neuronal ensembles. However, recent visual task studies found that selective attention attenuates stimulus-related θ power in the visual cortex, suggesting a functional dissociation of cortical θ oscillations. To investigate this contradictory behavior of cortical θ, a visual Go/No-Go task was performed with electroencephalogram (EEG) recording in C57BL/6J mice.

View Article and Find Full Text PDF

Absence seizures (AS) are generalized non-convulsive seizures characterized by a brief loss of consciousness and spike-and-wave discharges (SWD) in an electroencephalogram (EEG). A number of animal models have been developed to explain the mechanisms of AS, and thalamo-cortical networks are considered to be involved. However, the cortical foci have not been well described in mouse models of AS.

View Article and Find Full Text PDF

Recent brain connectome studies have evidenced distinct and overlapping brain regions involved in processing olfactory perception. However, neural correlates of hypo- or anosmia in olfactory disorder patients are poorly known. Furthermore, the bottom-up and top-down processing of olfactory perception have not been well-documented, resulting in difficulty in locating the disease foci of olfactory disorder patients.

View Article and Find Full Text PDF
Article Synopsis
  • High-density electroencephalographic (hdEEG) recordings help researchers study brain activity patterns, but the influence of subcortical arousal systems on these patterns is not well understood.
  • * This study uses optogenetic stimulation of basal forebrain parvalbumin neurons in mice to investigate how this stimulation affects gamma oscillations in the frontal cortex during auditory tasks.
  • * Results show that stimulating these neurons before 40 Hz auditory stimuli improves the brain's response and coordination between different cortical regions, suggesting a role in attention and consciousness.*
View Article and Find Full Text PDF

Stimulation of the medial forebrain bundle (MFB) can reinforce intracranial self-stimulation (ICSS) in rodents (i.e., reward-seeking behavior).

View Article and Find Full Text PDF

Recent improvements in neuroimaging and molecular markers of Alzheimer's disease (AD) have aided diagnosis in the early stage of the disease, which greatly increases the chance for successful prevention and treatment. However, the expanding resources for AD diagnosis are unlikely to benefit all elderly due to economic burden. Here, we aimed to develop an inexpensive and sensitive method to detect early-stage AD.

View Article and Find Full Text PDF

During the hair follicle (HF) cycle, HR protein expression is not concordant with the presence of the Hr mRNA transcript, suggesting an elaborate regulation of Hr gene expression. Here we present evidence that the 5' untranslated region (UTR) of the Hr gene has internal ribosome entry site (IRES) activity and this activity is regulated by the binding of poly (rC) binding protein 2 (PCBP2) to Hr mRNA. Overexpression and knockdown of PCBP2 resulted in a decrease in Hr 5' UTR IRES activity and an increase in HR protein expression without changing mRNA levels.

View Article and Find Full Text PDF

Equivalent dipole source localization is a well-established approach to localizing the electrical activity in electroencephalogram (EEG). So far, source localization has been used primarily in localizing the epileptic source in human epileptic patients. Currently, source localization techniques have been applied to account for localizing epileptic source among the epileptic patients.

View Article and Find Full Text PDF

Keratinocytes and fibroblasts cells play important roles in the skin-wound healing process and are the cell types activated by trauma. Activated cells participate in epithelialization, granulation, scar tissue formation, wound remodeling, and angiogenesis via a series of cellular activities including migration and proliferation. Previous studies reported that the conditioned medium (CM) of adipose-derived stem cells (ADSCs) stimulated the migration and proliferation of cell types involved in the skin wound healing process; however, these studies only show ADSC-CM effects that were obtained using 2-dimensional (2D) culture.

View Article and Find Full Text PDF