Background: Calcineurin inhibitors (CNIs) are associated with nephrotoxicity, endothelial cell dysfunction, and thrombotic microangiopathy (TMA). Evolving evidence suggests an important role for complement dysregulation in the pathogenesis of CNI-induced TMA. However, the exact mechanism(s) of CNI-induced TMA remain(s) unknown.
View Article and Find Full Text PDFWe demonstrate microwave dressing on ultracold, fermionic ^{23}Na^{40}K ground-state molecules and observe resonant dipolar collisions with cross sections exceeding 3 times the s-wave unitarity limit. The origin of these interactions is the resonant alignment of the approaching molecules' dipoles along the intermolecular axis, which leads to strong attraction. We explain our observations with a conceptually simple two-state picture based on the Condon approximation.
View Article and Find Full Text PDFPhys Rev Lett
November 2018
We study the critical vortex shedding in a strongly interacting fermionic superfluid of ^{6}Li across the BEC-BCS crossover. By moving an optical obstacle in the sample and directly imaging the vortices after the time of flight, the critical velocity u_{vor} for vortex shedding is measured as a function of the obstacle travel distance L. The observed u_{vor} increases with decreasing L, where the rate of increase is the highest in the unitary regime.
View Article and Find Full Text PDFCoherence, the stability of the relative phase between quantum states, is central to quantum mechanics and its applications. For ultracold dipolar molecules at sub-microkelvin temperatures, internal states with robust coherence are predicted to offer rich prospects for quantum many-body physics and quantum information processing. We report the observation of stable coherence between nuclear spin states of ultracold fermionic sodium-potassium (NaK) molecules in the singlet rovibrational ground state.
View Article and Find Full Text PDFWe demonstrate coherent microwave control of rotational and hyperfine states of trapped, ultracold, and chemically stable ^{23}Na^{40}K molecules. Starting with all molecules in the absolute rovibrational and hyperfine ground state, we study rotational transitions in combined magnetic and electric fields and explain the rich hyperfine structure. Following the transfer of the entire molecular ensemble into a single hyperfine level of the first rotationally excited state, J=1, we observe lifetimes of more than 3 s, comparable to those in the rovibrational ground state, J=0.
View Article and Find Full Text PDFWe report on the creation of an ultracold dipolar gas of fermionic 23Na40 K molecules in their absolute rovibrational and hyperfine ground state. Starting from weakly bound Feshbach molecules, we demonstrate hyperfine resolved two-photon transfer into the singlet X 1Σ+|v=0,J=0⟩ ground state, coherently bridging a binding energy difference of 0.65 eV via stimulated rapid adiabatic passage.
View Article and Find Full Text PDFWe report on the formation of ultracold weakly bound Feshbach molecules of 23Na40K, the first fermionic molecule that is chemically stable in its absolute ground state. The lifetime of the nearly degenerate molecular gas exceeds 100 ms in the vicinity of the Feshbach resonance. The measured dependence of the molecular binding energy on the magnetic field demonstrates the open-channel character of the molecules over a wide field range and implies significant singlet admixture.
View Article and Find Full Text PDFRecently, integrated flexible devices based on silicon nanowires (Si-NWs) have received significant attention as high performance flexible devices. However, most previous assembly methods can generate only specifically-shaped devices and require unconventional facilities, which has been a major hurdle for industrial applications. Herein, we report a simple but very efficient method for assembling Si-NWs into virtually generally-shape patterns on flexible substrates using only conventional microfabrication facilities, allowing us to mass-produce highly flexible low-noise devices.
View Article and Find Full Text PDF