Purpose: Papillary thyroid carcinoma (PTC) is the most common thyroid malignancy. Although its mortality rate is low, some patients experience cancer recurrence during follow-up. In this study, we investigated the accuracy of a novel multimodal model by simultaneously analyzing numeric and time-series data to predict recurrence in patients with PTC after thyroidectomy.
View Article and Find Full Text PDFSepsis is known as a common syndrome in intensive care units (ICU), and severe sepsis and septic shock are among the leading causes of death worldwide. The purpose of this study is to develop a deep learning model that supports clinicians in efficiently managing sepsis patients in the ICU by predicting mortality, ICU length of stay (>14 days), and hospital length of stay (>30 days). The proposed model was developed using 591 retrospective data with 16 tabular data related to a sequential organ failure assessment (SOFA) score.
View Article and Find Full Text PDFCurrent guidelines on atrial fibrillation (AF) emphasized that radiofrequency catheter ablation (RFCA) should be decided after fully considering its prognosis. However, a robust prediction model reflecting the complex interactions between the features affecting prognosis remains to be developed. In this paper, we propose a deep learning model for predicting the late recurrence after RFCA in patients with AF.
View Article and Find Full Text PDFAmyloid proteins are known to be the main cause of numerous degenerative and neurodegenerative diseases. In general, amyloids are misfolded from monomers and they tend to have β-strand formations. These misfolded monomers are then transformed into oligomers, fibrils, and plaques.
View Article and Find Full Text PDF