Publications by authors named "Jedrzejas M"

Stem cells (SC) were identified in both fetal and adult tissues. They appear a great potential for proliferation and differentiation. SC functions are affected by their local microenvironment, known as a SC niche, composed of extracellular matrix (ECM) and neighboring cells of other types.

View Article and Find Full Text PDF

Hyaluronan lyase (Hyal) is a surface enzyme occurring in many bacterial organisms including members of Streptococcus species. Streptococcal Hyal primarily degrades hyaluronan-substrate (HA) of the extracellular matrix. This degradation appears to facilitate the spread of this bacterium throughout host tissues.

View Article and Find Full Text PDF

The DNA-binding alpha/beta-type small acid-soluble proteins (SASPs) are a major factor in the resistance and long-term survival of spores of Bacillus species by protecting spore DNA against damage due to desiccation, heat, toxic chemicals, enzymes, and UV radiation. We now report the crystal structure at 2.1 A resolution of an alpha/beta-type SASP bound to a 10-bp DNA duplex.

View Article and Find Full Text PDF

Hyaluronan is being used increasingly as a component of artificial matrices and in bioengineering for tissue scaffolding. The length of hyaluronan polymer chains is now recognized as informational, involving a wide variety of size-specific functions. Inadvertent scission of hyaluronan can occur during the process of preparation.

View Article and Find Full Text PDF

Bacteria present a variety of molecules either on their surface or in a cell-free form. These molecules take part in numerous processes in the interactions with their host, with its tissues and other molecules. These molecules are essential to bacterial pathogenesis either during colonization or the spread/invasion stages, and most are virulence factors.

View Article and Find Full Text PDF

Here we report a high resolution structure of RecU-Holliday junction resolvase from Bacillus stearothermophilus. The functional unit of RecU is a homodimer that contains a "mushroom" like structure with a rigid cap and two highly flexible loops extending outwards. These loops appear to be highly flexible/dynamic, and presumably are directly involved in DNA binding and holding it for catalysis.

View Article and Find Full Text PDF
Article Synopsis
  • An engineered variant of a small acid-soluble spore protein from Bacillus subtilis was crystallized with DNA using the hanging-drop vapor-diffusion method.
  • The resulting crystals, grown at 281 K in sodium cacodylate buffer, diffracted X-rays to a resolution better than 2.4 A and contained multiple SASP molecules bound to a single DNA strand.
  • The crystals belong to a specific hexagonal space group and the structure determination is currently underway using advanced techniques involving selenomethionine-labeled protein.
View Article and Find Full Text PDF

Streptococcus pneumoniae open reading frame SP1492 encodes a surface protein that contains a novel conserved domain similar to the repeated fragments of mucin-binding proteins from lactobacilli and lactococci. To investigate the functional role(s) of this protein and its potential adhesive properties, the surface-exposed region of SP1492 was expressed in Escherichia coli, purified to homogeneity, and partially characterized by biophysical and immunological methods. Circular dichroism and sedimentation measurements confirmed that SP1492 is an all-beta protein that exists in solution as a monomer.

View Article and Find Full Text PDF

Phosphoglycerate mutases (PGMs) catalyze the isomerization of 2- and 3-phosphoglycerates and are essential for glucose metabolism in most organisms. This study reports the production, structure, and molecular dynamics analysis of Bacillus anthracis cofactor-independent PGM (iPGM). The three-dimensional structure of B.

View Article and Find Full Text PDF

The bacterial hyaluronan lyases (Hyals) that degrade hyaluronan, an important component of the extracellular matrix, are involved in microbial spread. Inhibitors of these enzymes are essential in investigation of the role of hyaluronan and Hyal in bacterial infections and constitute a new class of antibiotics against Hyal-producing bacteria. Recently, we identified 1,3-diacetylbenzimidazole-2-thione and related molecules as inhibitors of streptococcal Hyal.

View Article and Find Full Text PDF

Streptococcus pneumoniae hyaluronan lyase is a surface enzyme of this Gram-positive bacterium. The enzyme degrades several biologically important, information-rich linear polymeric glycans: hyaluronan, unsulfated chondroitin, and some chondroitin sulfates. This degradation facilitates spreading of bacteria throughout the host tissues and presumably provides energy and a carbon source for pneumococcal cells.

View Article and Find Full Text PDF

Dolichyl-phosphate-mannose (Dol-P-Man) synthase catalyzes the reversible formation of a key intermediate that is involved as a mannosyl donor in at least three different pathways for the synthesis of glycoconjugates important for eukaryotic development and viability. The enzyme is found associated with membranes of the endoplasmic reticulum (ER), where it transfers mannose from the water soluble cytoplasmic donor, guanosine 5'-diphosphate (GDP)-Man, to the membrane-bound, extremely hydrophobic, and long-chain polyisoprenoid acceptor, dolichyl-phosphate (Dol-P). The enzyme from Saccharomyces cerevisiae has been utilized to investigate the structure and activity of the protein and interactions of the enzyme with Dol-P and synthetic Dol-P analogs containing fluorescent probes.

View Article and Find Full Text PDF

Background: Streptococcus pneumoniae is a Gram-positive bacterium and a major human pathogen. The organism displays on its surface a variety of molecules that are involved in many essential processes including interactions with the tissues and molecules of its human host. A number of such surface molecules are essential virulence factors in disease processes and pathogenesis during all stages of bacterial life.

View Article and Find Full Text PDF

Objectives: The main objective of this study was to investigate the effects of pneumococcal hyaluronidase (0.1-10microg/ml), alone and in combination with pneumolysin (50 and 100ng/ml), on human ciliated epithelium.

Methods: Ciliary beat frequency (CBF) and structural integrity of human ciliated respiratory epithelium in vitro were studied using a phototransistor technique and a visual scoring index, respectively.

View Article and Find Full Text PDF

Human hyaluronidases (Hyals) are a group of five endo-beta-acetyl-hexosaminidase enzymes, Hyal-1, -2, -3, -4, and PH-20, which degrade hyaluronan using a hydrolytic mechanism of action. Catalysis by these Hyals has been shown to follow a double-displacement scheme. This involves a single Glu residue within the enzyme, the only catalytic residue, as the proton donor (acid).

View Article and Find Full Text PDF

Streptococcus pneumoniae open reading frame SP0082 encodes a surface protein that contains four copies of a novel conserved repeat domain that bears no significant sequence similarity to proteins of known function. Homologous sequences from other streptococci contain two to six of these repeats, designated the SSURE (streptococcal surface repeat) domain. To investigate the functional role(s) of this domain, the third SSURE repeat of SP0082 sequence has been expressed in Escherichia coli, purified to homogeneity and characterized by biochemical and immunological methods.

View Article and Find Full Text PDF

Hyaluronidases are enzymes that degrade hyaluronan, an important component of the extracellular matrix. The mammalian hyaluronidases are considered to be involved in many (patho)physiological processes like fertilization, tumor growth, and metastasis. Bacterial hyaluronidases, also termed hyaluronate lyases, contribute to the spreading of microorganisms in tissues.

View Article and Find Full Text PDF

Streptococcus pneumoniae is one of the major human bacterial pathogens. Current prophylactic agents against this pathogen are limited in their protective abilities and the role of therapeutics has been inadequate as resistant strains emerge. The development of new and improved therapies to combat the pneumococcal disease is necessary.

View Article and Find Full Text PDF

Pneumococcal surface protein A (PspA) is an antigenic variable vaccine candidate of Streptococcus pneumoniae. Epitope similarities between PspA from the American vaccine candidate strain Rx1 and Norwegian clinical isolates were studied using PspA specific monoclonal antibodies (mAbs) made against clinical Norwegian strains. Using recombinant PspA/Rx1 fragments and immunoblotting the epitopes for mAbs were mapped to two regions of amino acids, 1-67 and 67-236.

View Article and Find Full Text PDF

Streptococcus pneumoniae hyaluronate lyase is a surface enzyme of this Gram-positive bacterium. The enzyme degrades hyaluronan and chondroitin/chondroitin sulfates by cleaving the beta1,4-glycosidic linkage between the glycan units of these polymeric substrates. This degradation helps spreading of this bacterial organism throughout the host tissues and facilitates the disease process caused by pneumococci.

View Article and Find Full Text PDF

The members of Bacillus species are Gram-positive, ubiquitous spore-forming bacilli. Several genomic sequences have been made available during recent years, including Bacillus subtilis, a model organism among this genus, Bacillus anthracis, and their analyses provided a wealth of information about spore-forming bacteria. Some members of this species can cause serious diseases in livestock and humans.

View Article and Find Full Text PDF

Hyaluronate lyase enzymes degrade hyaluronan, the main polysaccharide component of the connective tissues of higher animals, thereby destroying the normal connective tissue structure and exposing the host tissue cells to various endo- and exogenous factors, including bacterial toxins. The 3D crystal structures of functionally active but truncated Streptococcus pneumoniae and S. agalactiae hyaluronate lyases, along with their substrate and product complexes, have been determined.

View Article and Find Full Text PDF