This review article delves into the growing field of solid-state batteries as a compelling alternative to conventional lithium-ion batteries. The article surveys ongoing research efforts at renowned Swiss institutions such as ETH Zurich, Empa, Paul Scherrer Institute, and Berner Fachhochschule covering various aspects, from a fundamental understanding of battery interfaces to practical issues of solid-state battery fabrication, their design, and production. The article then outlines the prospects of solid-state batteries, emphasizing the imperative practical challenges that remain to be overcome and highlighting Swiss research groups' efforts and research directions in this field.
View Article and Find Full Text PDFLi-ion batteries have a pivotal role in the transition toward electric transportation. Ni-rich layered transition metal oxide (LTMO) cathode materials promise high specific capacity and lower cost but exhibit faster degradation compared with lower Ni alternatives. Here, we employ high-resolution electron microscopy and spectroscopy techniques to investigate the nanoscale origins and impact on performance of intragranular cracking (within primary crystals) in Ni-rich LTMOs.
View Article and Find Full Text PDFTransition metal fluoride (TMF) conversion-type cathodes promise up to 4 times higher gravimetric energy densities compared to those of common intercalation-type cathodes. However, TMF cathodes demonstrate sluggish kinetics, poor efficiencies, and incompatibility with many liquid electrolytes. In this work, coevaporated heterostructured iron and lithium fluoride (Fe-LiF) cathodes are investigated in thin-film solid-state batteries with a LiPON electrolyte and a lithium metal anode.
View Article and Find Full Text PDFIn the concept of anode-free lithium-ion batteries, cells are manufactured with a bare anode current collector where the lithium metal anode is electrochemically formed from the lithium-containing cathode during the first charge cycle. While this concept has many attractive aspects from a manufacturing and energy density standpoint, stable plating and stripping remain challenging. We have investigated gold, platinum, and amorphous carbon as seed layers placed between the copper current collector and the lithium phosphorus oxynitride thin-film solid electrolyte.
View Article and Find Full Text PDFLi and Mn-rich layered oxides (LiNiMnO) are actively pursued as high energy and sustainable alternatives to the current Li-ion battery cathodes that contain Co. However, the severe decay in discharge voltage observed in these cathodes needs to be addressed before they can find commercial applications. A few mechanisms differing in origin have been proposed to explain the voltage fade, which may be caused by differences in material composition, morphology and electrochemical testing protocols.
View Article and Find Full Text PDFThe transition towards electric vehicles and more sustainable transportation is dependent on lithium-ion battery (LIB) performance. Ni-rich layered transition metal oxides, such as NMC811 (LiNiMnCoO), are promising cathode candidates for LIBs due to their higher specific capacity and lower cost compared with lower Ni content materials. However, complex degradation mechanisms inhibit their use.
View Article and Find Full Text PDFIL@MOF (IL: ionic liquid; MOF: metal-organic framework) materials have been proposed as a candidate for solid-state electrolytes, combining the inherent non-flammability and high thermal and chemical stability of the ionic liquid with the host-guest interactions of the MOF. In this work, we compare the structure and ionic conductivity of a sodium ion containing IL@MOF composite formed from a microcrystalline powder of the zeolitic imidazolate framework (ZIF), ZIF-8 with a hierarchically porous sample of ZIF-8 containing both micro- and mesopores from a sol-gel synthesis. Although the crystallographic structures were shown to be the same by X-ray diffraction, significant differences in particle size, packing and morphology were identified by electron microscopy techniques which highlight the origins of the hierarchical porosity.
View Article and Find Full Text PDF