Hematopoietic mutations in epigenetic regulators like DNA methyltransferase 3 alpha (DNMT3A), play a pivotal role in driving clonal hematopoiesis of indeterminate potential (CHIP), and are associated with unfavorable outcomes in patients suffering from heart failure (HF). However, the precise interactions between CHIP-mutated cells and other cardiac cell types remain unknown. Here, we identify fibroblasts as potential partners in interactions with CHIP-mutated monocytes.
View Article and Find Full Text PDFAims: Cardiac fibrosis drives the progression of heart failure in ischaemic and hypertrophic cardiomyopathy. Therefore, the development of specific anti-fibrotic treatment regimens to counteract cardiac fibrosis is of high clinical relevance. Hence, this study examined the presence of persistent fibroblast activation during longstanding human heart disease at a single-cell resolution to identify putative therapeutic targets to counteract pathological cardiac fibrosis in patients.
View Article and Find Full Text PDFImmune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues.
View Article and Find Full Text PDFCardiac symptoms are increasingly recognized as late complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in previously well individuals with mild initial illness, but the underlying pathophysiology leading to long-term cardiac symptoms remains unclear. In this study, we conducted serial cardiac assessments in a selected population of individuals with Coronavirus Disease 2019 (COVID-19) with no previous cardiac disease or notable comorbidities by measuring blood biomarkers of heart injury or dysfunction and by performing magnetic resonance imaging. Baseline measurements from 346 individuals with COVID-19 (52% females) were obtained at a median of 109 days (interquartile range (IQR), 77-177 days) after infection, when 73% of participants reported cardiac symptoms, such as exertional dyspnea (62%), palpitations (28%), atypical chest pain (27%) and syncope (3%).
View Article and Find Full Text PDFAims: Inflammatory activation of leukocytes may limit prognosis of patients (pts) with severe aortic valve stenosis (AS) undergoing transcatheter aortic valve replacement (TAVR). Leukocyte telomere length (LTL) is a marker of proliferative capacity and inflammatory responsiveness but the impact of LTL on the prognosis in AS remains elusive. The aim of this study was to analyse the association of LTL with inflammatory markers and prognosis of pts undergoing TAVR.
View Article and Find Full Text PDFThe regulation of bone vasculature by chronic diseases, such as heart failure is unknown. Here, we describe the effects of myocardial infarction and post-infarction heart failure on the bone vascular cell composition. We demonstrate an age-independent loss of type H endothelium in heart failure after myocardial infarction in both mice and humans.
View Article and Find Full Text PDFBackground: Dilated cardiomyopathy (DCM) is a leading cause of death in children with heart failure. The outcome of pediatric heart failure treatment is inconsistent, and large cohort studies are lacking. Progress may be achieved through personalized therapy that takes age- and disease-related pathophysiology, pathology, and molecular fingerprints into account.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
March 2021
Shortened telomeres have been linked to numerous chronic diseases, most importantly coronary artery disease, but the underlying mechanisms remain ill defined. Loss-of-function mutations and deletions in telomerase both accelerate telomere shortening but do not necessarily lead to a clinical phenotype associated with atherosclerosis, questioning the causal role of telomere length in cardiac pathology. The differential extranuclear functions of the 2 main components of telomerase, telomerase reverse transcriptase and telomerase RNA component, offer important clues about the complex relationship between telomere length and cardiovascular pathology.
View Article and Find Full Text PDFAims: Somatic mutations of the epigenetic regulators DNMT3A and TET2 causing clonal expansion of haematopoietic cells (clonal haematopoiesis; CH) were shown to be associated with poor prognosis in chronic ischaemic heart failure (CHF). The aim of our analysis was to define a threshold of variant allele frequency (VAF) for the prognostic significance of CH in CHF.
Methods And Results: We analysed bone marrow and peripheral blood-derived cells from 419 patients with CHF by error-corrected amplicon sequencing.
Rationale: Clonal hematopoiesis driven by mutations of DNMT3A (DNA methyltransferase 3a) is associated with increased incidence of cardiovascular disease and poor prognosis of patients with chronic heart failure (HF) and aortic stenosis. Although experimental studies suggest that DNMT3A clonal hematopoiesis-driver mutations may enhance inflammation, specific signatures of inflammatory cells in humans are missing.
Objective: To define subsets of immune cells mediating inflammation in humans using single-cell RNA sequencing.
Importance: Coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide. Case reports of hospitalized patients suggest that COVID-19 prominently affects the cardiovascular system, but the overall impact remains unknown.
Objective: To evaluate the presence of myocardial injury in unselected patients recently recovered from COVID-19 illness.
Aims: Systemic inflammatory response, identified by increased total leucocyte counts, was shown to be a strong predictor of mortality after transcatheter aortic valve implantation (TAVI). Yet the mechanisms of inflammation-associated poor outcome after TAVI are unclear. Therefore, the present study aimed at investigating individual inflammatory signatures and functional heterogeneity of circulating myeloid and T-lymphocyte subsets and their impact on 1 year survival in a single-centre cohort of patients with severe aortic stenosis undergoing TAVI.
View Article and Find Full Text PDFBackground: Nutritional status predicts outcomes after TAVR. Predictive value of Prognostic Nutritional Index (PNI) was investigated in patients undergoing TAVR, and compared to other nutritional indexes.
Methods: A cohort of 114 patients undergoing TAVR in a high-volume centre was studied.
Aims: Identification of signatures of immune cells at single-cell level may provide novel insights into changes of immune-related disorders. Therefore, we used single-cell RNA-sequencing to determine the impact of heart failure on circulating immune cells.
Methods And Results: We demonstrate a significant change in monocyte to T-cell ratio in patients with heart failure, compared to healthy subjects, which were validated by flow cytometry analysis.
Cytomegalovirus (CMV) seropositivity in adults has been linked to increased cardiovascular disease burden. Phenotypically, CMV infection leads to an inflated CD8 T-lymphocyte compartment. We employed a 8-colour flow cytometric protocol to analyse circulating T cells in 597 octogenarians from the same birth cohort together with NT-proBNP measurements and followed all participants over 7 years.
View Article and Find Full Text PDFObjective: Blood monocyte subsets are emerging as biomarkers of cardiovascular inflammation. However, our understanding of human monocyte heterogeneity and their immunophenotypic features under healthy and inflammatory conditions is still evolving.
Rationale: In this study, we sought to investigate the immunophenome of circulating human monocyte subsets.
Aims: Clonal haematopoiesis of indeterminate potential (CHIP), defined as the presence of an expanded somatic blood cell clone without other haematological abnormalities, was recently shown to increase with age and is associated with coronary artery disease and calcification. The most commonly mutated CHIP genes, DNMT3A and TET2, were shown to regulate inflammatory potential of circulating leucocytes. The incidence of degenerative calcified aortic valve (AV) stenosis increases with age and correlates with chronic inflammation.
View Article and Find Full Text PDFImportance: Somatic mutations causing clonal expansion of hematopoietic cells (clonal hematopoiesis of indeterminate potential [CHIP]) are increased with age and associated with atherosclerosis and inflammation. Age and inflammation are the major risk factors for heart failure, yet the association of CHIP with heart failure in humans is unknown.
Objective: To assess the potential prognostic significance of CHIP in patients with chronic heart failure (CHF) owing to ischemic origin.
We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of β2-integrin-dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischaemia-related angiogenesis.
View Article and Find Full Text PDFBackground: The signal peptide for human B-type natriuretic peptide preprohormone (BNPsp), which is released from cardiomyocytes, is increased in plasma of patients with acute myocardial infarction (AMI); however, its exact release kinetics have not been defined.
Methods: We measured BNPsp and high-sensitivity cardiac troponin T (hs-cTnT) in a reference group of individuals without structural heart disease (n = 285) and determined the release kinetics of these biomarkers in patients (n = 29) with hypertrophic obstructive cardiomyopathy undergoing transcoronary ablation of septal hypertrophy (TASH), a procedure allowing exact timing of onset of iatrogenic AMI. Blood samples were collected before TASH and at numerous preselected time points after TASH.
Background: Renal sympathetic denervation (RSD) represents an effective treatment option for patients with resistant arterial hypertension (HT). Extracellular matrix (ECM) turnover and deposition are essential processes in HT-related cardiovascular remodeling, fibrosis, and cardiac hypertrophy and contribute to hypertensive heart disease.
Objectives: The primary aim of the present study was to examine the effect of RSD on increased collagen turnover as reflected by serum levels of amino-terminal pro-peptides (PINP, PIIINP) and a carboxyl-terminal pro-peptide (PICP), specific biomarkers for cardiac ECM turnover and cardiovascular fibrosis.