This work provides a mathematical derivation of a quasi-stationary (QS) model for multimode parametric down-conversion (PDC), which was presented in Gatti . (Gatti ., .
View Article and Find Full Text PDFEntangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications, due their multimodal nature in space and time. However, a satisfactory theoretical description is still lacking. In this work we propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
View Article and Find Full Text PDFUltrashort Bessel beams have been used in this work to study the response of a 430-μm-thick monocrystalline sapphire sample to laser-matter interaction when injecting the beam orthogonally through the whole sample thickness. We show that with a 12° Bessel beam cone angle, we are able to internally modify the material and generate tailorable elongated microstructures while preventing the formation of surface cracks, even in the picosecond regime, contrary to what was previously reported in the literature. On the other hand, by means of Bessel beam machining combined with a trepanning technique where very high energy pulses are needed, we were able to generate 100 μm diameter through-holes, eventually with negligible cracks and very low taper angles thanks to an optimization achieved by using a 60-μm-thick layer of Kapton Polyimide removable tape.
View Article and Find Full Text PDFMicro-drilling transparent dielectric materials by using non-diffracting beams impinging orthogonally to the sample can be performed without scanning the beam position along the sample thickness. In this work, the laser micromachining process, based on the combination of picosecond pulsed Bessel beams with the trepanning technique, is applied to different transparent materials. We show the possibility to create through-apertures with diameter on the order of tens of micrometers, on dielectric samples with different thermal and mechanical characteristics as well as different thicknesses ranging from two hundred to five hundred micrometers.
View Article and Find Full Text PDFWe experimentally investigate the parametric down-conversion process in a nonlinear bulk crystal, driven by two non-collinear pump modes. The experiment shows the emergence of bright hot-spots in modes shared by the two pumps, similar to the phenomenology recently observed in 2D nonlinear photonic crystals. By exploiting the spatial walk-off between the two extraordinary pump modes, we have been able to recreate a peculiar resonance condition, reported by a local enhancement of the parametric gain, which corresponds to a transition from a three-mode to a four-mode coupling.
View Article and Find Full Text PDFNonlinear optical processes are an essential tool in modern optics, with a broad spectrum of applications, including signal processing, frequency conversion, spectroscopy and quantum optics. Ordinary parametric devices nevertheless still suffer from relatively low gains and wide spectral emission. Here we demonstrate a unique configuration for phase-matching multiple nonlinear processes in a monolithic 2D nonlinear photonic crystal, resulting in the coherent parametric emission of four signal and idler modes, featuring an exponential gain enhancement equal to the Golden Ratio.
View Article and Find Full Text PDFNonlinear interactions are commonly used to access to wavelengths not covered by standard laser systems. In particular, optical parametric amplification (OPA) is a powerful technique to produce broadly tunable light. However, common implementations of OPA suffer from a well-known trade-off, either achieving high efficiency for narrow spectra or inefficient conversion over a broad bandwidth.
View Article and Find Full Text PDFDiamond is a promising platform for sensing and quantum processing owing to the remarkable properties of the nitrogen-vacancy (NV) impurity. The electrons of the NV center, largely localized at the vacancy site, combine to form a spin triplet, which can be polarized with 532 nm laser light, even at room temperature. The NV's states are isolated from environmental perturbations making their spin coherence comparable to trapped ions.
View Article and Find Full Text PDFIn this paper we illustrate how the localization of the stationary two-dimensional solution of the propagation equation strongly depends on the features of its spatio-temporal spectral bandwidth. We especially investigate the role of the ultra-broad temporal support and of the spatial bandwidth of the spectrum on the high localization in one spatial dimension of "Bessel-like" or "blade-like" beams, quasi-stationarily propagating in normally dispersive materials, and potentially interesting for microfabrication applications.
View Article and Find Full Text PDFThis work presents the experimental observation of the nonfactorable near-field spatiotemporal correlation of ultrabroadband twin beams generated by parametric down-conversion, in an interferometric-type experiment using sum frequency generation, where both the temporal and the spatial degrees of freedom of parametric down-conversion light are controlled with high resolution. The revealed correlation is skewed in space-time in accordance with the X structure predicted by the theory.
View Article and Find Full Text PDFWe demonstrate the ultranarrow temporal correlation (6 fs full width half maximum) of twin beams generated by parametric down-conversion by using its reverse process, i.e., sum-frequency generation.
View Article and Find Full Text PDFIn this paper we show how after the generation of parametric down-conversion radiation (PDC) in the very high gain pulsed regime, we are able to reconstruct the pump via up-conversion of the twin beams originated from that PDC process. The peculiarity of the experiment is the ultra-broad spectral and angular bandwidth sent into the process of sum frequency mixing thanks to an achromatic imaging technique from the exit face of the PDC crystal using off-axis parabolic mirrors. The recorded spectra presented illustrate the high visibility recombination of the intense phase-conjugated signal and idler beams and pave the way for the investigation of both the spatial and temporal properties of the near field biphoton amplitude.
View Article and Find Full Text PDFWe investigate the spatiotemporal structure of the biphoton entanglement in parametric down-conversion (PDC) and we demonstrate its nonfactorable X-shaped geometry. Such a structure gives access to the ultrabroad bandwidth of PDC, and can be exploited to achieve a biphoton temporal localization in the femtosecond range. This extreme localization is connected to our ability to resolve the photon positions in the source near field.
View Article and Find Full Text PDFThe formation of long stationary filaments resulting in uniform high density plasma strings in air using short pulse UV laser Bessel beams is shown. The length and the electron density of the plasma strings can be easily tuned by adjusting the conical Bessel wavefront angle. It is shown that in this regime the length of the plasma string can be extended over meter-long scales without any compromise in the string uniformity or any temporal evolution of the filamented laser pulse.
View Article and Find Full Text PDFWe propose an experimental technique that allows for a complete characterization of the amplitude and phase of optical pulses in space and time. By the combination of a spatially resolved spectral measurement in the near and far fields and a frequency-resolved optical gating measurement, the electric field of the pulse is obtained through a fast, error-reduction algorithm.
View Article and Find Full Text PDFWe numerically investigate the possibility to generate freely accelerating or decelerating pulses. In particular it is shown that acceleration along the propagation direction z may be obtained by a purely spatial modulation of an input Gaussian pulse in the form of finite-energy Bessel pulses with a cone angle that varies along the radial coordinate.We discuss simple practical implementations of such accelerating Bessel beams.
View Article and Find Full Text PDFBy using two very different seed pulses we demonstrate that the spatiotemporal gain properties of a chi(2) optical parametric amplifier can be exploited as an efficient conical reshaping mechanism leading to the generation and amplification of a pulsed Bessel beam.
View Article and Find Full Text PDFWe study the effect of Two-Photon Absorption (TPA) nonlinear losses on Gaussian pulses, with power that exceeds the critical power for self-focusing, propagating in bulk kerr media. Experiments performed in fused silica and silicon highlight a spontaneous reshaping of the input pulse into a pulsed Bessel beam. A filament is formed in which sub-diffractive propagation is sustained by the Bessel-nature of the pulse.
View Article and Find Full Text PDFWe predict that the combination of space and time modulational instabilities that occur by means of parametric wave mixing in quadratic media leads to colored conical emission. This phenomenon should be observed under conditions usually employed in second-harmonic experiments.
View Article and Find Full Text PDFConsidering the problem of parametric nonlinear interaction, we report the experimental observation of electromagnetic waves characterized by an X-shaped spatiotemporal coherence; i.e., coherence is neither spatial nor temporal, but skewed along specific spatiotemporal trajectories.
View Article and Find Full Text PDFUsing a 1 GW, 1 ps pump laser pulse in high-gain parametric down conversion allows us to detect sub-shot-noise spatial quantum correlation with up to 100 photoelectrons per mode by means of a high efficiency charge coupled device. The statistics is performed in single shot over independent spatial replica of the system. Evident quantum correlations were observed between symmetrical signal and idler spatial areas in the far field.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2004
In optical second-harmonic generation with normal dispersion, the virtually infinite bandwidth of the unbounded, hyperbolic, modulational instability leads to quenching of spatial multisoliton formation and to the occurrence of a catastrophic spatiotemporal breakup when an extended beam is left to interact with an extremely weak external noise with a coherence time much shorter than that of the pump.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2004
The spatiotemporal intensity profile of a 100-fs wave packet at the output of a X2 crystal, tuned for mismatched second-harmonic generation, is probed via sum-frequency generation with a compressed, 20-fs pulse, revealing the appearance of an X-type wave shape.
View Article and Find Full Text PDFWe observe the formation of an intense optical wave packet fully localized in all dimensions, i.e., both longitudinally (in time) and in the transverse plane, with an extension of a few tens of fsec and microns, respectively.
View Article and Find Full Text PDF