Publications by authors named "Jedidiah Gaetz"

Both diffusible factors acting in trans and chromatin components acting in cis are implicated in gene regulation, but the extent to which either process causally determines a cell's transcriptional identity is unclear. We recently used cell fusion to define a class of silent genes termed "cis-silenced" (or "occluded") genes, which remain silent even in the presence of trans-acting transcriptional activators. We further showed that occlusion of lineage-inappropriate genes plays a critical role in maintaining the transcriptional identities of somatic cells.

View Article and Find Full Text PDF

It is a long-held paradigm that cell fusion reprograms gene expression but the extent of reprogramming and whether it is affected by the cell types employed remain unknown. We recently showed that the silencing of somatic genes is attributable to either trans-acting cellular environment or cis-acting chromatin context. Here, we examine how trans- versus cis-silenced genes in a somatic cell type behave in fusions to another somatic cell type or to embryonic stem cells (ESCs).

View Article and Find Full Text PDF

The progressive restriction of cell fate during lineage differentiation is a poorly understood phenomenon despite its ubiquity in multicellular organisms. We recently used a cell fusion assay to define a mode of epigenetic silencing that we termed "occlusion", wherein affected genes are silenced by cis-acting chromatin mechanisms irrespective of whether trans-acting transcriptional activators are present. We hypothesized that occlusion of lineage-inappropriate genes could contribute to cell fate restriction.

View Article and Find Full Text PDF

We recently described two opposing states of transcriptional competency. One is termed 'competent' whereby a gene is capable of responding to trans-acting transcription factors of the cell, such that it is active if appropriate transcriptional activators are present, though it can also be silent if activators are absent or repressors are present. The other is termed 'occluded' whereby a gene is silenced by cis-acting, chromatin-based mechanisms in a manner that blocks it from responding to trans-acting factors, such that it is silent even when activators are present in the cellular milieu.

View Article and Find Full Text PDF

Accurate chromosome segregation during meiosis depends on the assembly of a microtubule-based spindle of proper shape and size. Current models for spindle-size control focus on reaction diffusion-based chemical regulation and balance in activities of motor proteins. Although several molecular perturbations have been used to test these models, controlled mechanical perturbations have not been possible.

View Article and Find Full Text PDF

A gene's transcriptional output is the combined product of two inputs: diffusible factors in the cellular milieu acting in trans, and chromatin state acting in cis. Here, we describe a strategy for dissecting the relative contribution of cis versus trans mechanisms to gene regulation. Referred to as trans complementation, it entails fusing two disparate cell types and searching for genes differentially expressed between the two genomes of fused cells.

View Article and Find Full Text PDF

Bipolarity of the meiotic spindle, required for proper chromosome segregation, is maintained throughout cell division despite rapid microtubule turnover. How this is achieved has remained mysterious, as determining the organization of individual spindle microtubules has been difficult. Here, we develop single-fluorophore speckle imaging to examine microtubule organization in the vertebrate meiotic spindle.

View Article and Find Full Text PDF

During cell division, the proper assembly of a microtubule-based bipolar spindle depends on signals from chromatin. However, it is unknown how the spatial organization of chromatin signals affects spindle morphology. Here, we use paramagnetic chromatin beads, and magnetic fields for their alignment in cell-free extracts, to examine the spatial components of signals that regulate spindle assembly.

View Article and Find Full Text PDF

Neuronal migrations along glial fibers provide a primary pathway for the formation of cortical laminae. To examine the mechanisms underlying glial-guided migration, we analyzed the dynamics of cytoskeletal and signaling components in living neurons. Migration involves the coordinated two-stroke movement of a perinuclear tubulin 'cage' and the centrosome, with the centrosome moving forward before nuclear translocation.

View Article and Find Full Text PDF

During cell division metaphase spindles maintain constant length, whereas spindle microtubules continuously flux polewards, requiring addition of tubulin subunits at microtubule plus-ends, polewards translocation of the microtubule lattice, and removal of tubulin subunits from microtubule minus-ends near spindle poles. How these processes are coordinated is unknown. Here, we show that dynein/dynactin, a multi-subunit microtubule minus-end-directed motor complex, and NuMA, a microtubule cross-linker, regulate spindle length.

View Article and Find Full Text PDF

In this study, a zebrafish homologue of the coxsackievirus and adenovirus receptor (CAR) protein was identified. Although the extracellular domain of zebrafish CAR (zCAR) is less than 50% identical to that of human CAR (hCAR), zCAR mediated infection of transfected cells by both adenovirus type 5 and coxsackievirus B3. CAR residues interacting deep within the coxsackievirus canyon are highly conserved in zCAR and hCAR, which is consistent with the idea that receptor contacts within the canyon are responsible for coxsackievirus attachment.

View Article and Find Full Text PDF