Publications by authors named "Jed Hubbs"

Article Synopsis
  • The study presents a high-throughput screening method to find therapies for a rare childhood disease (AP-4 deficiency) that causes mislocalization of a protein called ATG9A.
  • Researchers screened over 28,000 small molecules and discovered a promising compound, BCH-HSP-C01, that can correct the protein's abnormal movement in various disease models, including patient cells.
  • The findings also include insights into how BCH-HSP-C01 works on a molecular level, laying the groundwork for future research related to treatment options for AP-4 deficiency.
View Article and Find Full Text PDF

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. SSADHD leads to impaired GABA metabolism and results in accumulation of GABA and γ-hydroxybutyrate (GHB), which alter neurotransmission and are thought to lead to neurobehavioral symptoms. However, why increased inhibitory neurotransmitters lead to seizures remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • This study focused on developing a high-throughput screening method to identify new treatment targets for AP-4 deficiency, a rare childhood disease that causes problems with protein transport in cells.
  • Researchers screened a large library of 28,864 small molecules and found a promising lead compound that corrected the mislocalization of the autophagy protein ATG9A in various disease models, including patient-derived cells.
  • The study used advanced techniques to investigate how the lead compound affects molecular targets and cellular mechanisms, ultimately providing crucial insights for future drug development aimed at treating AP-4 deficiency.
View Article and Find Full Text PDF

Chronic itch is a highly debilitating condition affecting about 10% of the general population. The relay of itch signals is under tight control by inhibitory circuits of the spinal dorsal horn, which may offer a hitherto unexploited therapeutic opportunity. Here, we found that specific pharmacological targeting of inhibitory α2 and α3GABA receptors reduces acute histaminergic and non-histaminergic itch in mice.

View Article and Find Full Text PDF

Early lead compounds in this gamma secretase modulator series were found to potently inhibit CYP3A4 and other human CYP isoforms increasing their risk of causing drug-drug-interactions (DDIs). Using structure-activity relationships and CYP3A4 structural information, analogs were developed that minimized this DDI potential. Three of these new analogs were further characterized by rat PK, rat PK/PD and rat exploratory toxicity studies resulting in selection of SPI-1865 (14) as a preclinical development candidate.

View Article and Find Full Text PDF

The identification and in vitro and in vivo characterization of a potent SHI-1:2 are described. Kinetic analysis indicated that biaryl inhibitors exhibit slow binding kinetics in isolated HDAC1 and HDAC2 preparations. Delayed histone hyperacetylation and gene expression changes were also observed in cell culture, and histone acetylation was observed in vivo beyond disappearance of drug from plasma.

View Article and Find Full Text PDF

Introduction: Modulation of the gamma-secretase enzyme, which reduces the production of the amyloidogenic Aβ42 peptide while sparing the production of other Aβ species, is a promising therapeutic approach for the treatment of Alzheimer's disease. Satori has identified a unique class of small molecule gamma-secretase modulators (GSMs) capable of decreasing Aβ42 levels in cellular and rodent model systems. The compound class exhibits potency in the nM range in vitro and is selective for lowering Aβ42 and Aβ38 while sparing Aβ40 and total Aβ levels.

View Article and Find Full Text PDF

The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)-formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline-are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al.

View Article and Find Full Text PDF

The discovery of a new series of γ-secretase modulators is disclosed. Starting from a triterpene glycoside γ-secretase modulator that gave a very low brain-to-plasma ratio, initial SAR and optimization involved replacement of a pendant sugar with a series of morpholines. This modification led to two compounds with significantly improved central nervous system (CNS) exposure.

View Article and Find Full Text PDF

A series of triterpene-based γ-secretase modulators is optimized. An acetate present at the C24 position of the natural product was replaced with either carbamates or ethers to provide compounds with better metabolic stability. With one of those pharmacophores in place at C24, morpholines or carbamates were installed at the C3 position to refine the physicochemical properties of the analogues.

View Article and Find Full Text PDF

The development of a novel series of purines as gamma-secretase modulators for potential use in the treatment of Alzheimer's disease is disclosed herein. Optimization of a previously disclosed pyrimidine series afforded a series of potent purine-based gamma-secretase modulators with 300- to 2000-fold in vitro selectivity over inhibition of Notch cleavage and that selectively reduces Alphabeta42 in an APP-YAC transgenic mouse model.

View Article and Find Full Text PDF

We report herein a novel series of difluoropiperidine acetic acids as modulators of gamma-secretase. Synthesis of 2-aryl-3,3-difluoropiperidine analogs was facilitated by a unique and selective beta-difluorination with Selectfluor. Compounds 1f and 2c were selected for in vivo assessment and demonstrated selective lowering of Abeta42 in a genetically engineered mouse model of APP processing.

View Article and Find Full Text PDF

Ongoing clinical studies indicate that inhibitors of Class I and Class II histone deacetylase (HDAC) enzymes show great promise for the treatment of cancer. Zolinza (SAHA, Zolinza) was recently approved by the FDA for the treatment of the cutaneous manifestations of cutaneous T-cell lymphoma. As a part of an ongoing effort to identify novel small molecules to target these important enzymes, we have prepared several classes of amino acid-derived HDAC1 inhibitors.

View Article and Find Full Text PDF

A multigram synthesis of the C29-C51 subunit of altohyrtin C (spongistatin 2) has been accomplished. Union of this intermediate with the C1-C28 fragment and further elaboration furnished the natural product. Completion of the C29-C51 subunit began with the aldol coupling of the boron enolate derived from methyl ketone 8 and aldehyde 9.

View Article and Find Full Text PDF

A practical second-generation synthesis of an advanced intermediate in our total synthesis of altohyrtin C (spongistatin 2) has been developed. A new approach to the C1-C15 (AB) portion features a vinyllithium addition to an aldehyde followed by a palladium-catalyzed allylic reduction to install the troublesome C13-C15 segment. Our general approach to the C16-C28 (CD) spiroketal has been retained, but some improvements have been made.

View Article and Find Full Text PDF

An enantioselective aldol reaction of N-propionylthiazolidinethione and representative aldehydes is disclosed. The reaction is catalyzed by [Ni(S,S)-t-BuBox](Otf)2. Enolization is effected by 2,6-lutidine, and TMSOTf facilitates catalyst turnover.

View Article and Find Full Text PDF