We use the pair-product approximation to the complex-time quantum mechanical propagator to obtain accurate quantum mechanical results for the symmetrized velocity autocorrelation function of a Lennard-Jones fluid at two points on the thermodynamic phase diagram. A variety of tests are performed to determine the accuracy of the method and understand its breakdown at longer times. We report quantitative results for the initial 0.
View Article and Find Full Text PDFForward-backward semiclassical dynamics (FBSD) provides a rigorous and powerful methodology for calculating time correlation functions in condensed phase systems characterized by substantial quantum mechanical effects associated with zero-point motion, quantum dispersion, or identical particle exchange symmetries. The efficiency of these simulations arises from the use of classical trajectories to capture all dynamical information. However, full quantization of the density operator makes these calculations rather expensive compared to fully classical molecular dynamics simulations.
View Article and Find Full Text PDF