Publications by authors named "Jeanyoung Jo"

Scanning ion conductance microscopy (SICM) is a topographic imaging technique capable of probing biological samples in electrolyte conditions. SICM enhancements have enabled surface charge detection based on voltage-dependent signals. Here, we show how the hopping mode SICM method (HP-SICM) can be used for rapid and minimally invasive surface charge mapping.

View Article and Find Full Text PDF

Historically, appreciation for the roles of resource gradients in biology has fluctuated inversely to the popularity of genetic mechanisms. Nevertheless, in microbiology specifically, widespread recognition of the multicellular lifestyle has recently brought new emphasis to the importance of resource gradients. Most microorganisms grow in assemblages such as biofilms or spatially constrained communities with gradients that influence, and are influenced by, metabolism.

View Article and Find Full Text PDF

Bacteria commonly live in spatially structured biofilm assemblages, which are encased by an extracellular matrix. Metabolic activity of the cells inside biofilms causes gradients in local environmental conditions, which leads to the emergence of physiologically differentiated subpopulations. Information about the properties and spatial arrangement of such metabolic subpopulations, as well as their interaction strength and interaction length scales are lacking, even for model systems like colony biofilms grown on agar-solidified media.

View Article and Find Full Text PDF

R-bodies are long, extendable protein polymers formed in the cytoplasm of some bacteria; they are best known for their role in killing of paramecia by bacterial endosymbionts. Pseudomonas aeruginosa PA14, an opportunistic pathogen of diverse hosts, contains genes (referred to as the reb cluster) with potential to confer production of R-bodies and that have been implicated in virulence. Here, we show that products of the PA14 reb cluster associate with R-bodies and control stochastic expression of R-body structural genes.

View Article and Find Full Text PDF

Extracellular electron transfer (EET), the reduction of compounds that shuttle electrons to distal oxidants, can support bacterial survival when preferred oxidants are not directly accessible. EET has been shown to contribute to virulence in some pathogenic organisms and is required for current generation in mediator-based fuel cells. In several species, components of the electron transport chain (ETC) have been implicated in electron shuttle reduction, raising the question of how shuttling-based metabolism is integrated with primary routes of metabolic electron flow.

View Article and Find Full Text PDF
Article Synopsis
  • Antibiotic effectiveness can be negatively impacted by metabolites and drugs at infection sites, with Pseudomonas aeruginosa releasing phenazines that help it maintain balanced redox levels.
  • The study reveals that phenazines increase tolerance to antibiotics like ciprofloxacin in biofilms, depending on the carbon source available for bacterial growth.
  • Using stable isotope labeling and stimulated Raman scattering microscopy, researchers demonstrated that phenazines enhance metabolism in specific areas of biofilms and affect the bacteria's response to treatment, emphasizing intricate interactions between bacterial metabolites and antibiotic effectiveness.
View Article and Find Full Text PDF

is the most common cause of chronic, biofilm-based lung infections in patients with cystic fibrosis (CF). Sputum from patients with CF has been shown to contain oxic and hypoxic subzones as well as millimolar concentrations of lactate. Here, we describe the physiological roles and expression patterns of lactate dehydrogenases in the contexts of different growth regimes.

View Article and Find Full Text PDF

Hypoxia is a common challenge faced by bacteria during associations with hosts due in part to the formation of densely packed communities (biofilms). -type cytochrome oxidases, which catalyze the terminal step in respiration and have a high affinity for oxygen, have been linked to bacterial pathogenesis. The pseudomonads are unusual in that they often contain multiple full and partial (i.

View Article and Find Full Text PDF

Biofilms are communities of microbial cells that are encapsulated within a self-produced polymeric matrix. The matrix is critical to the success of biofilms in diverse habitats; however, many details of the composition, structure, and function remain enigmatic. Biofilms formed by the Gram-positive bacterium depend on the production of the secreted film-forming protein BslA.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) has important roles in metabolism and is crucial for virulence for some pathogenic bacteria. PC contains biotin carboxylase (BC), carboxyltransferase (CT) and biotin carboxyl carrier protein (BCCP) components. It is a single-chain enzyme in eukaryotes and most bacteria, and functions as a 500 kD homo-tetramer.

View Article and Find Full Text PDF

Biotin-dependent carboxylases are widely distributed in nature and have important functions in the metabolism of fatty acids, amino acids, carbohydrates, cholesterol and other compounds. Defective mutations in several of these enzymes have been linked to serious metabolic diseases in humans, and acetyl-CoA carboxylase is a target for drug discovery in the treatment of diabetes, cancer and other diseases. Here we report the identification and biochemical, structural and functional characterizations of a novel single-chain (120 kDa), multi-domain biotin-dependent carboxylase in bacteria.

View Article and Find Full Text PDF

The opportunistic pathogen Pseudomonas aeruginosa encodes a large and diverse complement of aerobic terminal oxidases, which is thought to contribute to its ability to thrive in settings with low oxygen availability. In this issue, Arai et al. (J.

View Article and Find Full Text PDF

With the growing number of microRNAs (miRNAs) being identified each year, more innovative molecular tools are required to efficiently characterize these small RNAs in living animal systems. Caenorhabditis elegans is a powerful model to study how miRNAs regulate gene expression and control diverse biological processes during development and in the adult. Genetic strategies such as large-scale miRNA deletion studies in nematodes have been used with limited success since the majority of miRNA genes do not exhibit phenotypes when individually mutated.

View Article and Find Full Text PDF

The C. elegans genome has been completely sequenced, and the developmental anatomy of this model organism is described at single-cell resolution. Here we utilize strategies that exploit this precisely defined architecture to link gene expression to cell type.

View Article and Find Full Text PDF