Publications by authors named "Jeannine Coburn"

Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. It accounts for 50 % of cancers diagnosed in infants less than 1 year old, and 10 % of all pediatric cancer deaths in the United States. High-risk patients have a less than 50 % 5-year survival rate with current treatment strategies.

View Article and Find Full Text PDF

Neuroblastoma (NB) is the most common pediatric extracranial solid tumor. High-risk NB is a subset of the disease that has poor prognosis and requires multimodal treatment regimens, with a 50% rate of recurrence despite intervention. There is a need for improved treatment strategies to reduce high-risk patient mortality.

View Article and Find Full Text PDF

Aim: The pleiotropic effect of fibroblast growth factor 2 (FGF2) on promoting myogenesis, angiogenesis, and innervation makes it an ideal growth factor for treating volumetric muscle loss (VML) injuries. While an initial delivery of FGF2 has demonstrated enhanced regenerative potential, the sustained delivery of FGF2 from scaffolds with robust structural properties as well as biophysical and biochemical signaling cues has yet to be explored for treating VML. The goal of this study is to develop an instructive fibrin microthread scaffold with intrinsic topographic alignment cues as well as regenerative signaling cues and a physiologically relevant, sustained release of FGF2 to direct myogenesis and ultimately enhance functional muscle regeneration.

View Article and Find Full Text PDF

Research of the nontraditional polysaccharide gellan gum (GG) is a growing space for the development of novel drug delivery systems due to its tunable physic-mechanical properties, biocompatibility, and stability in a wide range of environments. Unfortunately, high temperature crosslinking is often required, representing a limiting factor for the incorporation of thermosensitive therapeutic agents. Here, we demonstrated that GG can be crosslinked at a low temperature (38 °C) using a simple fabrication process that utilizes trilysine as an alternative to traditional mono- or divalent ion crosslinkers.

View Article and Find Full Text PDF

Functional regeneration of anisotropically aligned tissues such as ligaments, microvascular networks, myocardium, or skeletal muscle requires a temporal and spatial series of biochemical and biophysical cues to direct cell functions that promote native tissue regeneration. When these cues are lost during traumatic injuries such as volumetric muscle loss (VML), scar formation occurs, limiting the regenerative capacity of the tissue. Currently, autologous tissue transfer is the gold standard for treating injuries such as VML but can result in adverse outcomes including graft failure, donor site morbidity, and excessive scarring.

View Article and Find Full Text PDF

Bacterial-derived cellulose (BC) has been studied as a promising material for biomedical applications, including wound care, due to its biocompatibility, water-holding capacity, liquid/gas permeability, and handleability properties. Although BC has been studied as a dressing material for cutaneous wounds, to date, BC inherently lacks antibacterial properties. The current research utilizes bifunctional chimeric peptides containing carbohydrate binding peptides (CBP; either a short version or a long version) and an antimicrobial peptide (AMP), KR-12.

View Article and Find Full Text PDF

Bacterial cellulose (BC) exhibits beneficial properties for use in biomedical applications but is limited by its lack of tunable transparency capabilities. To overcome this deficiency, a novel method to synthesize transparent BC materials using an alternative carbon source, namely arabitol, was developed. Characterization of the BC pellicles was performed for yield, transparency, surface morphology, and molecular assembly.

View Article and Find Full Text PDF

Lyophilization of protein solutions, such as silk fibroin (silk), produces porous scaffolds useful for tissue engineering (TE). The impact of modifying lyophilization primary drying parameters on scaffold properties has not yet been explored previously. In this work, changes to primary drying duration and temperature were investigated using 3%, 6%, 9%, and 12% (w/v) silk solutions, via protocols labeled as Long Hold, Slow Ramp, and Standard.

View Article and Find Full Text PDF

Phomoxanthone A is a naturally occurring molecule and a powerful anti-cancer agent, although its mechanism of action is unknown. To facilitate the determination of its biological target(s), we used affinity-based labelling using a phomoxanthone A probe. Labelled proteins were pulled down, subjected to chemoproteomics analysis using LC-MS/MS and ATP synthase was identified as a likely target.

View Article and Find Full Text PDF

Increasing the mass and/or activity of brown adipose tissue (BAT) is one promising avenue for treating obesity and related metabolic conditions, given that BAT has a high potential for energy expenditure and is capable of improving glucose and lipid homeostasis. BAT occurs either in discrete "classical" depots, or interspersed in white adipose tissue (WAT), termed "inducible/recruitable" BAT, or 'beige/brite' adipocytes. We and others have demonstrated that bone morphogenetic protein 7 (BMP7) induces brown adipogenesis in committed and uncommitted progenitor cells, resulting in increased energy expenditure and reduced weight gain in mice.

View Article and Find Full Text PDF

Despite the success of cancer therapeutics, off target cell toxicity prevails as one of the main challenges of cancer treatment. Exploration of drug delivery methods is a growing field of research, which involves a variety of materials and processing techniques. A natural polymer, gellan gum presents physicochemical properties that enable drug loading for sustained release in a broad range of environmental conditions and anatomical locations.

View Article and Find Full Text PDF
Article Synopsis
  • Clear cell renal cell carcinoma (ccRCC) is the most prevalent type of kidney cancer, primarily triggered by mutations affecting oxygen sensing in kidney cells.
  • Current lab techniques fall short in replicating the diverse environment of ccRCC tumors, which leads to a need for improved models to study both tumor and supporting stromal cells.
  • The study identified a unique extracellular matrix (ECM) composition in ccRCC, mainly consisting of collagen VI, fibronectin, and tenascin C, and developed a nine-component ECM blend that enables the growth of both tumor and stromal cells for better modeling and analysis of cell interactions in a tumor-like setting.
View Article and Find Full Text PDF

liver models are necessary tools for the development of new therapeutics. HepaRG cells are a commonly used cell line to produce hepatic progenitor cells and hepatocytes. This study demonstrates for the first time the suitability of 3% silk scaffolds to support HepaRG growth and differentiation.

View Article and Find Full Text PDF

Background: Pancreatic neuroendocrine tumors (PanNETs) are increasingly common. Experts debate whether small tumors should be resected. Tumor destruction via injection of cytotoxic agents could offer a minimal invasive approach to this controversy.

View Article and Find Full Text PDF

Development of a 3D, biomaterials-based model for clear cell renal cell carcinoma (ccRCC) would be advantageous for understanding disease progression in vitro. This study demonstrated the development of lyophilized silk scaffolds that mechanically match the experimentally determined Young's modulus for ex vivo ccRCC samples and normal kidney tissue. Scaffolds fabricated from silk solutions ranging from 3 to 12% (w/v) were evaluated through mechanical testing.

View Article and Find Full Text PDF

There has been a recent increase in exploring the use of decellularized plant tissue as a novel "green" material for biomedical applications. As part of this effort, we have developed a technique to decellularize cultured plant cells (tobacco BY-2 cells and rice cells) and tissue (tobacco hairy roots) that uses deoxyribonuclease I (DNase I)). As a proof of concept, all cultured plant cells and tissue were transformed to express recombinant enhanced green fluorescent protein (EGFP) to show that the proteins of interest could be retained within the matrices.

View Article and Find Full Text PDF

Development of in vitro, preclinical cancer models that contain cell-driven microenvironments remains a challenge. Engineering of millimeter-scale, in vitro tumor models with spatially distinct regions that can be independently assessed to study tumor microenvironments has been limited. Here, we report the use of porous silk scaffolds to generate a high cell density neuroblastoma (NB) model that can spatially recapitulate changes resulting from cell and diffusion driven changes.

View Article and Find Full Text PDF

Neuroblastoma is the most common extracranial solid tumor of childhood and is associated with poor survival in high risk patients. Recently, dinutuximab (DNX) has emerged as an effective immunotherapy to treat patients with high risk neuroblastoma. DNX works through the induction of cell lysis via complement-dependent cytotoxicity (CDC) or antibody dependent cellular cytotoxicity (ADCC).

View Article and Find Full Text PDF

Despite advances in cancer therapeutics, particularly in the area of immuno-oncology, successful treatment of neuroblastoma (NB) remains a challenge. NB is the most common cancer in infants under 1 year of age, and accounts for approximately 10% of all pediatric cancers. Currently, children with high-risk NB exhibit a survival rate of 40-50%.

View Article and Find Full Text PDF

Horseradish peroxidase (HRP) has been investigated as a catalyst to crosslink tissue-engineered hydrogels because of its mild reaction conditions and ability to modulate the mechanical properties of the matrix. Here, we report the results of the first study investigating the use of HRP to crosslink fibrin scaffolds. We examined the effect of varying HRP and hydrogen peroxide (HO) incorporation strategies on the resulting crosslink density and structural properties of fibrin in a microthread scaffold format.

View Article and Find Full Text PDF

Background: Neuroblastoma is the most common pediatric extracranial solid malignancy with limited effective treatment. We have shown that sustained-release, single drugs delivered locally through a silk-based biomaterial are effective in decreasing orthotopic neuroblastoma xenograft growth. We further optimized this approach and hypothesized that increasing doses of local chemotherapy or delivering 2 chemotherapeutic agents simultaneously inhibit additional tumor growth.

View Article and Find Full Text PDF

Immunotherapy targeting GD2 is a primary treatment for patients with high-risk neuroblastoma. Dinutuximab is a monoclonal antibody with great clinical promise but is limited by side effects such as severe pain. Local delivery has emerged as a potential mechanism to deliver higher doses of therapeutics into the tumor bed, while limiting systemic toxicity.

View Article and Find Full Text PDF

Polymeric particles are ideal drug delivery systems due to their cellular uptake-relevant size. Microparticles could be developed for direct injection of drug formulations into a diseased site, such as a tumor, allowing for drug retention and slow drug exposure over time through sustained release mechanisms. silk fibroin has shown promise as a biocompatible biomaterial both in research and the clinic.

View Article and Find Full Text PDF

Drug delivery systems capable of local sustained release of small molecule therapeutics remain a critical need in many fields, including oncology. Here, a system to create tunable hydrogels capable of modulating the loading and release of cationic small molecule therapeutics was developed. Chondroitin sulfate (CS) is a sulfated glycosaminoglycan that has many promising properties, including biocompatibility, biodegradation and chemically modifiable groups for both covalent and non-covalent bonding.

View Article and Find Full Text PDF

Development of novel therapeutics is limited by a lack of accurate preclinical models for testing, specifically the inability of traditional 2D culture (monolayer) to accurately mimic in vivo tumors. In this work, lyophilized silk fibroin scaffolds were used to develop 3D neuroblastoma models (scaffolded NB) using multiple neuroblastoma cell lines (SK-N-AS, KELLY, and SH-SY5Y). Cells grown on scaffolds in low (1%) and ambient (21%) oxygen were compared to traditional monolayer cell culture.

View Article and Find Full Text PDF