Plants interact with a wide variety of fungi in a mutualistic, parasitic or neutral way. The associations formed depend on the exchange of nutrients and signalling molecules between the partners. This includes a diverse set of protein classes involved in defence, nutrient uptake or establishing a symbiotic relationship.
View Article and Find Full Text PDFThe plastid-encoded plastid RNA polymerase (PEP) represents the major transcription machinery in mature chloroplasts. Proteomic studies identified four plastome- and at least ten nuclear-encoded proteins making up this multimeric enzyme. Depletion of single subunits is known to result in strongly diminished PEP activity causing severe defects in chloroplast biogenesis.
View Article and Find Full Text PDFChloroplast transcription in land plants relies on collaboration between a plastid-encoded RNA polymerase (PEP) of cyanobacterial ancestry and a nucleus-encoded RNA polymerase of phage ancestry. PEP associates with additional proteins that are unrelated to bacterial transcription factors, many of which have been shown to be important for PEP activity in Arabidopsis (Arabidopsis thaliana). However, the biochemical roles of these PEP-associated proteins are not known.
View Article and Find Full Text PDFThe plastid transcription machinery can be biochemically purified at different organisational levels as soluble RNA polymerase, transcriptionally active chromosome, or nucleoid. Recent proteomic studies have uncovered several novel proteins in these structures and functional genomic studies have indicated that a lack of many of these proteins results in chlorotic phenotypes of varying degree. The most severe cases exhibit complete albino phenotypes, which led to the conclusion that the proteins that were lacking had important regulatory roles in plastid gene expression and chloroplast development.
View Article and Find Full Text PDFPlant photosynthesis takes place in specialized cell organelles, the chloroplasts, which perform all essential steps of this process. The proteins involved in photosynthesis are encoded by genes located on the plastid and nuclear genomes. Proper function and regulation of light harvesting and energy fixation thus requires a tight coordination of the gene expression machineries in the two genetic compartments.
View Article and Find Full Text PDFThe major RNA polymerase activity in mature chloroplasts is a multisubunit, Escherichia coli-like protein complex called PEP (for plastid-encoded RNA polymerase). Its subunit structure has been extensively investigated by biochemical means. Beside the "prokaryotic" subunits encoded by the plastome-located RNA polymerase genes, a number of additional nucleus-encoded subunits of eukaryotic origin have been identified in the PEP complex.
View Article and Find Full Text PDFChloroplast mRNA populations are characterized by overlapping transcripts derived by processing from polycistronic precursors. The mechanisms and functional significance of these processing events are poorly understood. We describe a pentatricopeptide repeat (PPR) protein, PPR10, whose binding defines mRNA segments derived from two transcription units in maize chloroplasts.
View Article and Find Full Text PDFTranscription in plastids is mediated by a plastid-encoded multimeric (PEP) and a nuclear-encoded single-subunit RNA polymerase (NEP) and a still unknown number of nuclear-encoded factors. By combining gel filtration and affinity chromatography purification steps, we isolated transcriptionally active chromosomes from Arabidopsis thaliana and mustard (Sinapis alba) chloroplasts and identified 35 components by electrospray ionization ion trap tandem mass spectrometry. Eighteen components, called plastid transcriptionally active chromosome proteins (pTACs), have not yet been described.
View Article and Find Full Text PDF