Peripheral heterochromatin in mammalian nuclei is tethered to the nuclear envelope by at least two mechanisms here referred to as the A- and B-tethers. The A-tether includes lamins A/C and additional unknown components presumably INM protein(s) interacting with both lamins A/C and chromatin. The B-tether includes the inner nuclear membrane (INM) protein Lamin B-receptor, which binds B-type lamins and chromatin.
View Article and Find Full Text PDFThe dynamic re-arrangement of actin filaments is an essential process in the plasticity of synaptic connections during memory formation. In this study, we determined in mice effects of actin filament arrest in the basolateral complex of the amygdala (BLA) at different time points after memory acquisition and re-activation, using the fungal cytotoxin phalloidin. Our data show a selective disruption of auditory cued but not contextual fear memory, when phalloidin was injected 6h after conditioning.
View Article and Find Full Text PDFWe analysed the nuclear organization of the Polycomb/Trithorax group response element (PRE/TRE) Fab-7 and of other PRE/TREs in larval tissues of D. melanogaster. The results show that pairing/clustering of transgenic and endogenous Fab-7 elements and of other endogenous PRE/TREs occurs only to a limited degree in a highly locus-specific and tissue-specific manner.
View Article and Find Full Text PDFThe human genes CFTR, ASZ1/GASZ, and CTTNBP2/CORTBP2 map to adjacent loci on chromosome 7q31 and display characteristic patterns of nuclear positioning, which strictly correlate with the state of activity. To address the evolutionary conservation of gene positioning, we investigated transcriptional activity and nuclear positioning of the highly conserved murine orthologs and of additional murine genes mapping to the region of conserved synteny on mouse chromosome 6. The results showed that all murine loci investigated constitutively localized in the nuclear interior irrespective of their functional state.
View Article and Find Full Text PDFBackground Information: Recent results from a limited number of eukaryotic model organisms suggest that major principles governing spatial organization of the genome in functionally distinct nuclear compartments are conserved through evolution.
Results: We examined the in situ spatial organization of major nuclear components and nuclear patterns of gene loci with strictly defined expression patterns in endocycling cells of the transparent urochordate Oikopleura dioica, a complex metazoan with a very compact genome. Endocycling cells with different functions and similar DNA content displayed distinct topologies of nuclear components.