Publications by authors named "Jeannette Golembieski"

On the basis of the previously reported clinical candidate, SSA-426 (1), a series of related 2-piperazin-1-ylquinoline derivatives 3-16 were synthesized and evaluated as dual-acting serotonin (5-HT) reuptake inhibitors and 5-HT1A receptor antagonists. In particular, compound 7 exhibits potent functional activities at both the 5-HT transporter and 5-HT1A receptor, good selectivity over the alpha1-adrenergic and dopaminergic receptors, acceptable pharmacokinetic properties, and a favorable in vivo profile.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored new compounds that combine elements affecting serotonin receptors and transporters, connecting them via an alkyl chain.
  • They found that specific structures, particularly a certain benzopyran linked to an indole, showed better affinity for serotonin targets, especially with certain fluorine and cyano substitutions.
  • The study identified that certain chemical features, like cyclobutyl groups and the arrangement of atoms at specific positions, were crucial for effective antagonism at the serotonin 1A receptor, but some compounds were not potent enough for further development.
View Article and Find Full Text PDF

Based on the previously reported discovery lead, 3-(cis-4-(4-(1H-indol-4-yl)piperazin-1-yl)cyclohexyl)-5-fluoro-1H-indole (2), a series of related arylpiperazin-4-yl-cyclohexyl indole analogs were synthesized then evaluated as 5-HT transporter inhibitors and 5-HT(1A) receptor antagonists. The investigation of the structure-activity relationships revealed the optimal pharmacophoric elements required for activities in this series. The best example from this study, 5-(piperazin-1-yl)quinoline analog (trans-20), exhibited equal binding affinities at 5-HT transporter (K(i)=4.

View Article and Find Full Text PDF

Structural modifications of the initial lead, 3-aminochroman (4), led to the identification of a novel series of pyridyl-fused amino chroman derivatives (5-8) and the structural isomers (9-12). The compounds described were evaluated for dual 5-HT transporter inhibitory and 5-HT(1A) receptor activities. The design strategy, synthesis, and in vitro biological characterization for these novel compounds are described.

View Article and Find Full Text PDF