Cyclodextrins containing 6-aldehyde groups were found to catalyse oxidation of aminophenols in the presence of hydrogen peroxide. The catalysis followed Michaelis-Menten kinetics and is related to the catalysis previously observed with cyclodextrin ketones. A range of different cyclodextrin aldehydes were prepared containing one, two or more aldehydes at the primary rim (6-positions) or a ethoxy-2-al or propoxy-3-al at the secondary rim.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2008
Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e.
View Article and Find Full Text PDF[reaction: see text] (6AR,6DR)-6A,6D-Di-C-cyano-beta-cyclodextrin (1) and 6A,6D-di-C-cyano-alpha-cyclodextrin (2) were synthesized and shown to catalyze hydrolysis of aryl glycosides into glucose and phenol with a reaction following Michaelis-Menten kinetics. At pH 8.0 and 59 degrees C hydrolysis of 4-nitrophenyl alpha-glucopyranoside was catalyzed by 1 with KM = 10.
View Article and Find Full Text PDF