Publications by authors named "Jeanne M Robinson"

In this work we build on prior studies of the novel water-soluble cationic conjugated polymer known as "P2" (poly{2,5-bis[3-( N, N, N-triethylammonium bromide)-1-oxapropyl]-1,4-phenylenevinylene}) with a focus on its incorporation into thin films for such applications as photovoltaics or electroluminescent devices. Multilayer assemblies were constructed using P2, the anionic surfactant sodium dodecyl sulfate (SDS), and the polyanion poly(sodium 4-styrene-sulfonate) (PSS) using the technique of layer-by-layer electrostatic self-assembly (LBL-ESA). SDS was observed to affect the layer thicknesses and absorbance characteristics of the films.

View Article and Find Full Text PDF

We report experimental results on the low-temperature uptake of HCl on H(2)O ice (ice). HCl was deposited on the surface at greater than monolayer amounts at 85 K, and the ice substrate was heated. The temperature dependence of the HCl vapor pressure from this phase was measured from 110 to 150 K, with the nucleation of a bulk hydrate phase observed at 150 K.

View Article and Find Full Text PDF

Mixed surfactant-polyelectrolyte multilayer films were fabricated by both ionic self-assembly and spin assembly. A polycation [PEI = poly(ethylenimine)] was deposited from a dilute solution, while a polyanion (PAZO = poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]) was deposited from a mixture containing a fixed concentration of polyanion and various concentrations of the anionic surfactant sodium dodecyl sulfate (SDS). Coadsorption of SDS and PAZO onto PEI layers was observed using both deposition methods and attributed to strong PEI-SDS interactions and entropic factors.

View Article and Find Full Text PDF

We report the synthesis and layer-by-layer (LBL) deposition of a class of azo-benzene surfactants with the polycation poly(ethylenimine) (PEI). The different surfactants of the type X-azo-(CH2)10-SO3-, where X = -NO2, -CN, and -COCH3 in the azo-benzene moiety, have decreasing electron-withdrawing strengths. We use dynamic surface force measurements to study the in situ kinetics of adsorption of the amphiphiles onto PEI.

View Article and Find Full Text PDF

We report the successful demonstration of a near-IR tunable laser (1525.4-1558.2 nm) that uses an integrated LiTaO3 deflector in combination with a reflection grating as an electronically tunable filter.

View Article and Find Full Text PDF