Recombinant insulin is a life-saving therapeutic for millions of patients affected by diabetes mellitus. Standard mutagenesis has led to insulin variants with improved control of blood glucose; for instance, the fast-acting insulin lispro contains two point mutations that suppress dimer formation and expedite absorption. However, insulins undergo irreversible denaturation, a process accelerated for the insulin monomer.
View Article and Find Full Text PDFPancreatic ductal progenitor cells have been proposed to contribute to adult tissue maintenance and regeneration after injury, but the identity of such ductal cells remains elusive. Here, from adult mice, we identify a near homogenous population of ductal progenitor-like clusters, with an average of 8 cells per cluster. They are a rare subpopulation, about 0.
View Article and Find Full Text PDFPluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. In this study, we aim to identify small molecules that affect immature beta cells.
View Article and Find Full Text PDFDaily injections of insulin provide lifesaving benefits to millions of diabetics. But currently available prandial insulins are suboptimal: The onset of action is delayed by slow dissociation of the insulin hexamer in the subcutaneous space, and insulin forms amyloid fibrils upon storage in solution. Here we show, through the use of noncanonical amino acid mutagenesis, that replacement of the proline residue at position 28 of the insulin B-chain (ProB28) by (4S)-hydroxyproline (Hzp) yields an active form of insulin that dissociates more rapidly, and fibrillates more slowly, than the wild-type protein.
View Article and Find Full Text PDFStem and progenitor cells from the adult pancreas could be a potential source of therapeutic beta-like cells for treating patients with type 1 diabetes. However, it is still unknown whether stem and progenitor cells exist in the adult pancreas. Research strategies using cre-lox lineage-tracing in adult mice have yielded results that either support or refute the idea that beta cells can be generated from the ducts, the presumed location where adult pancreatic progenitors may reside.
View Article and Find Full Text PDFProgenitor cells in the adult pancreas are potential sources of endocrine beta cells for treating type 1 diabetes. Previously, we identified tri-potent progenitor cells in the adult (2-4month-old) murine pancreas that were capable of self-renewal and differentiation into duct, acinar, and endocrine cells in vitro. These progenitor cells were named pancreatic colony-forming units (PCFUs).
View Article and Find Full Text PDFTerminal transferase-dependent polymerase chain reaction (TDPCR) can be used after reverse transcription (RT) to analyze RNA. This method (RT-TDPCR) has been used for study of RNA structure and RNA-protein interactions at nucleotide-level resolution. A detailed protocol of RT-TDPCR is presented here with examples of its use with ribonuclease T1 in mammalian cells for detecting (1) RNA structure and protein footprints of the human ferritin heavy-chain messenger RNA and (2) in vivo structure of exon 4 of human XIST (X chromosome inactivation-specific transcript) RNA.
View Article and Find Full Text PDFTerminal transferase-dependent PCR (TDPCR) can be used after reverse transcription to analyze RNA. This method (RT-TDPCR) is able to provide in vivo information at nucleotide-level resolution, and has been used for study of ribozymes, RNA size, RNA structure, and RNA-protein interactions. A detailed protocol of RT-TDPCR is presented here with examples of its use in detecting ribozyme cleavage intermediates in yeast and a RNA transcription start site in mammalian cells.
View Article and Find Full Text PDF