Publications by authors named "Jeanne Heintz"

Reaching reproducible strong coupling between a quantum emitter and a plasmonic resonator at room temperature, while maintaining high emission yields, would make quantum information processing with light possible outside of cryogenic conditions. We theoretically propose to exploit the high local curvatures at the tips of plasmonic nanocubes to reach Purcell factors of >10 at visible frequencies, rendering single-molecule strong coupling more easily accessible than with the faceted spherical nanoparticles used in recent experimental demonstrations. In the case of gold nanocube dimers, we highlight a trade-off between coupling strength and emission yield that depends on the nanocube size.

View Article and Find Full Text PDF

Hybrid nanostructures, in which a known number of quantum emitters are strongly coupled to a plasmonic resonator, should feature optical properties at room temperature such as few-photon nonlinearities or coherent superradiant emission. We demonstrate here that this coupling regime can only be reached with dimers of gold nanoparticles in stringent experimental conditions, when the interparticle spacing falls below 2 nm. Using a short transverse DNA double-strand, we introduce five dye molecules in the gap between two 40 nm gold particles and actively decrease its length down to sub-2 nm values by screening electrostatic repulsion between the particles at high ionic strengths.

View Article and Find Full Text PDF

This paper deals with the investigations of terephthalic acid (TPA) molecules deposited on a low reactive Ag(111) surface and studied using scanning tunneling microscopy (STM) at low temperature and DFT calculations. These investigations show that two deprotonation states energetically equivalent can be produced at the single molecule level. On self assemblies, the mobility of H atoms at 77 K favours the motion of created defects in the layer.

View Article and Find Full Text PDF