Modeling the couplings between active particles often neglects the possible many-body effects that control the propulsion mechanism. Accounting for such effects requires the explicit modeling of the molecular details at the origin of activity. Here, we take advantage of a recent two-dimensional model of isotropic active particles whose propulsion originates from the interactions between solute particles in the bath.
View Article and Find Full Text PDFEur Phys J E Soft Matter
December 2022
We study a two-dimensional model of an active isotropic colloid whose propulsion is linked to the interactions between solute particles of the bath. The colloid catalyzes a chemical reaction in its vicinity, that yields a local phase separation of solute particles. The density fluctuations of solute particles result in the enhanced diffusion of the colloid.
View Article and Find Full Text PDFThe motion of active colloids is generally achieved through their anisotropy, as exemplified by Janus colloids. Recently, there was a growing interest in the propulsion of isotropic colloids, which requires some local symmetry breaking. Although several mechanisms for such propulsion were proposed, little is known about the role played by the interactions within the environment of the colloid, which can have a dramatic effect on its propulsion.
View Article and Find Full Text PDF