The PowerPlex(®) ESI 16 Fast, ESI 17 Fast, ESX 16 Fast, and ESX 17 Fast Systems represent faster cycling versions (50min or less) of the PowerPlex(®) ESI and ESX Systems released by Promega in 2009 to accommodate the ENFSI and EDNAP groups' call for new STR multiplexes for Europe. In addition to amplification of purified DNA samples, these new faster cycling systems allow for direct amplification from single-source blood and buccal samples deposited on FTA(®) and nonFTA paper as well as from SwabSolution™ extracts of buccal swabs without the need for purification and quantitation. There are no changes to the autosomal primer pair sequences in the PowerPlex(®) ESI Fast and ESX Fast Systems compared to the original multiplexes, and full concordance at all autosomal loci and amelogenin was observed with data generated previously with the original PowerPlex(®) ESI and ESX Systems.
View Article and Find Full Text PDFWe characterized the redox profiles in two different human prostate carcinoma cell lines (LNCaP vs PC3) that are known to exhibit varying degrees of invasiveness/metastatic ability. We confirmed that PC3 cells were more invasive than LNCaP cells through an in vitro analysis. The present study documented higher 8-hydroxy-2'-deoxyguanosine levels in PC3 cells than in LNCaP cells.
View Article and Find Full Text PDFCancer cells are able to tolerate levels of O(2) that are damaging or lethal to normal cells; we hypothesize that this tolerance is the result of biochemical plasticity which maintains cellular homeostasis of both energy levels and oxidation state. In order to examine this hypothesis, we used different O(2) levels as a selective agent during long-term culture of DU145 prostate cancer cells to develop three isogenic cell lines that grow in normoxic (4%), hyperoxic (21%), or hypoxic (1%) O(2) conditions. Growth characteristics and O(2) consumption differed significantly between these cell lines without changes in ATP levels or altered sensitivity to 2-deoxy-D-glucose, an inhibitor of glycolysis.
View Article and Find Full Text PDFThe purpose of this study was to evaluate stable DNA transfection of M-21 human melanoma cells with particle-mediated gene transfer (PMGT) with B7-1 cDNA and to identify sites of gene integration. Stable B7-1 transfectants (M-21-B7) were obtained with PMGT using a plasmid vector containing cDNA for both B7-1 and neomycin phosphotransferase, with subsequent selection with G418. The transfected cells were flow sorted by B7-1 expression into two populations, bright and dim.
View Article and Find Full Text PDF