Publications by authors named "Jeanne A Mortimer"

The importance of some ecosystems remains poorly understood. We showed that mesophotic ecosystems (30 to 150 m) are a key habitat for a critically endangered species, with strong evidence that a globally important population of adult hawksbill turtles () almost exclusively foraged at these depths on remote submerged banks. This discovery highlights the need for such areas to be included in conservation planning, for example, as part of the United Nations High Seas Treaty.

View Article and Find Full Text PDF

How animals navigate across the ocean to isolated targets remains perplexing greater than 150 years since this question was considered by Charles Darwin. To help solve this long-standing enigma, we considered the likely resolution of any map sense used in migration, based on the navigational performance across different scales (tens to thousands of kilometres). We assessed navigational performance using a unique high-resolution Fastloc-GPS tracking dataset for post-breeding hawksbill turtles () migrating relatively short distances to remote, isolated targets on submerged banks in the Indian Ocean.

View Article and Find Full Text PDF

Background: During the 2019 First Descent: Seychelles Expedition, shallow and deep reef ecosystems of the Seychelles Outer Islands were studied by deploying a variety of underwater technologies to survey their benthic flora and fauna. Submersibles, remotely operated vehicles (ROVs) and SCUBA diving teams used stereo-video camera systems to record benthic communities during transect surveys conducted at 10 m, 30 m, 60 m, 120 m, 250 m and 350 m depths. In total, ~ 45 h of video footage was collected during benthic transect surveys, which was subsequently processed using annotation software in order to assess reef biodiversity and community composition.

View Article and Find Full Text PDF

Space use estimates can inform conservation management but relaying high-accuracy locations is often not straightforward. We used Fastloc-GPS Argos satellite tags with the innovation of additional data relay via a ground station (termed a "Mote") to record high volumes (typically >20 locations per individual per day) of high accuracy tracking data. Tags were attached in the Chagos Archipelago (Indian Ocean) in 2018-2019 to 23 immature turtles of two species for which there have been long-standing conservation concerns: 21 hawksbill turtles (Eretmochelys imbricata) and two green turtles (Chelonia mydas).

View Article and Find Full Text PDF

Understanding how ocean currents impact the distribution and connectivity of marine species, provides vital information for the effective conservation management of migratory marine animals. Here, we used a combination of molecular genetics and ocean drift simulations to investigate the spatial ecology of juvenile green turtle () developmental habitats, and assess the role of ocean currents in driving the dispersal of green turtle hatchlings. We analyzed mitochondrial (mt)DNA sequenced from 358 juvenile green turtles, and from eight developmental areas located throughout the Southwest Indian Ocean (SWIO).

View Article and Find Full Text PDF

Estimating the absolute number of individuals in populations and their fecundity is central to understanding the ecosystem role of species and their population dynamics as well as allowing informed conservation management for endangered species. Estimates of abundance and fecundity are often difficult to obtain for rare or cryptic species. Yet, in addition, here we show for a charismatic group, sea turtles, that are neither cryptic nor rare and whose nesting is easy to observe, that the traditional approach of direct observations of nesting has likely led to a gross overestimation of the number of individuals in populations and underestimation of their fecundity.

View Article and Find Full Text PDF

Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature.

View Article and Find Full Text PDF

Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km.

View Article and Find Full Text PDF

Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km(2) ) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species' use of protected versus unprotected areas.

View Article and Find Full Text PDF

Changes in phenology, the timing of seasonal activities, are among the most frequently observed responses to environmental disturbances and in marine species are known to occur in response to climate changes that directly affects ocean temperature, biogeochemical composition and sea level. We examined nesting seasonality data from long-term studies at 8 green turtle (Chelonia mydas) rookeries that include 21 specific nesting sites in the South-West Indian Ocean (SWIO). We demonstrated that temperature drives patterns of nesting seasonality at the regional scale.

View Article and Find Full Text PDF

Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology.

View Article and Find Full Text PDF

Background: Resolving threats to widely distributed marine megafauna requires definition of the geographic distributions of both the threats as well as the population unit(s) of interest. In turn, because individual threats can operate on varying spatial scales, their impacts can affect different segments of a population of the same species. Therefore, integration of multiple tools and techniques--including site-based monitoring, genetic analyses, mark-recapture studies and telemetry--can facilitate robust definitions of population segments at multiple biological and spatial scales to address different management and research challenges.

View Article and Find Full Text PDF

The hawksbill turtle (Eretmochelys imbricata), listed since 1996 by the IUCN as Critically Endangered and by the Convention on International Trade in Endangered Species (CITES) as an Appendix I species, has been the subject of attention and controversy during the past 10 years due to the efforts of some nations to re-open banned international trade. The most recent debate has centred on whether it is appropriate for Cuba to harvest hawksbills from shared foraging aggregations within her national waters. In this issue of Molecular Ecology, Bowen et al.

View Article and Find Full Text PDF