Publications by authors named "Jeanmarie Verchot-Lubicz"

Background: Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E).

View Article and Find Full Text PDF

Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement.

View Article and Find Full Text PDF

Recent studies of aquatic and land plants show that similar phenomena determine intracellular transport of organelles and vesicles. This suggests that aspects of cell signaling involved in development and response to external stimuli are conserved across species. The movement of molecular motors along cytoskeletal filaments directly or indirectly entrains the fluid cytosol, driving cyclosis (i.

View Article and Find Full Text PDF

Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3.

View Article and Find Full Text PDF

Plasmodesmata (Pd) are symplastic channels between neighboring plant cells and are key in plant cell-cell signaling. Viruses of proteins, nucleic acids, and a wide range of signaling macromolecules move across Pd. Protein transport Pd is regulated by development and biotic signals.

View Article and Find Full Text PDF

ABSTRACT Soilborne wheat mosaic virus (SBWMV) is an agronomically important pathogen of wheat that is transmitted by the soilborne plasmodiophorid vector Polymyxa graminis. In the laboratory, attempts to generate SBWMV-infected plants are often hampered by poor infectivity of the virus. To analyze the mechanism for virus resistance in wheat cultivars, we developed novel inoculation techniques.

View Article and Find Full Text PDF

To determine the requirements for viral proteins exiting the phloem, transgenic plants expressing green fluorescent protein (GFP) fused to the Potato virus X (PVX) triple gene block (TGB)p1 and coat protein (CP) genes were prepared. The fused genes were transgenically expressed from the companion cell (CC)-specific Commelina yellow mottle virus (CoYMV) promoter. Transgenic plants were selected for evidence of GFP fluorescence in CC and sieve elements (SE) and proteins were determined to be phloem mobile based on their ability to translocate across a graft union into nontransgenic scions.

View Article and Find Full Text PDF

To test the hypothesis that many viruses remain to be discovered in plants, a procedure was developed to sequence nucleic acids cloned randomly from virus-like particle fractions of plant homogenates. As a test of the efficiency of the procedure we targeted Ambrosia psilostachya, western ragweed, plants growing at the Tallgrass Prairie Preserve of northeastern Oklahoma. Amplifiable nucleic acid was found in the fractions from six of twelve specimens and sequences were characterized from four of them.

View Article and Find Full Text PDF

Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus.

View Article and Find Full Text PDF

Potato virus X (PVX) encodes three proteins named TGBp1, TGBp2, and TGBp3 which are required for virus cell-to-cell movement. To determine whether PVX TGB proteins interact during virus cell-cell movement, GFP was fused to each TGB coding sequence within the viral genome. Confocal microscopy was used to study subcellular accumulation of each protein in virus-infected plants and protoplasts.

View Article and Find Full Text PDF

Recent advances in potexvirus research have produced new models describing virus replication, cell-to-cell movement, encapsidation, R gene-mediated resistance and gene silencing. Interactions between distant RNA elements are a central theme in potexvirus replication. The 5' non-translated region (NTR) regulates genomic and subgenomic RNA synthesis and encapsidation, as well as virus plasmodesmal transport.

View Article and Find Full Text PDF

Background: Plasmodiophorids and chytrids are zoosporic parasites of algae and land plant and are distributed worldwide. There are 35 species belonging to the order Plasmodiophorales and three species, Polymyxa betae, P. graminis, and Spongospora subterranea, are plant viral vectors.

View Article and Find Full Text PDF

Most RNA viruses remodel the endomembrane network to promote virus replication, maturation, or egress. Rearrangement of cellular membranes is a crucial component of viral pathogenesis. The PVX TGBp2 protein induces vesicles of the granular type to bud from the endoplasmic reticulum network.

View Article and Find Full Text PDF

The green fluorescent protein (GFP) gene was fused to the potato virus X (PVX) TGBp2 gene, inserted into either the PVX infectious clone or pRTL2 plasmids, and used to study protein subcellular targeting. In protoplasts and plants inoculated with PVX-GFP:TGBp2 or transfected with pRTL2-GFP:TGBp2, fluorescence was mainly in vesicles and the endoplasmic reticulum (ER). During late stages of virus infection, fluorescence became increasingly cytosolic and nuclear.

View Article and Find Full Text PDF

In the last five years, we have gained significant insight into the role of the Potexvirus proteins in virus movement and RNA silencing. Potexviruses require three movement proteins, named triple gene block (TGB)p1, TGBp2, and TGBp3, and the viral coat protein (CP) to facilitate viral cell-to-cell and vascular transport. TGBp1 is a multifunctional protein that has RNA helicase activity, promotes translation of viral RNAs, increases plasmodesmal size exclusion limits, and suppresses RNA silencing.

View Article and Find Full Text PDF

Amino acid sequence analyses indicate that the Soilborne wheat mosaic virus (SBWMV) 19K protein is a cysteine-rich protein (CRP) and shares sequence homology with CRPs derived from furo-, hordei-, peclu- and tobraviruses. Since the hordei- and pecluvirus CRPs were shown to be pathogenesis factors and/or suppressors of RNA silencing, experiments were conducted to determine if the SBWMV 19K CRP has similar activities. The SBWMV 19K CRP was introduced into the Potato virus X (PVX) viral vector and inoculated to tobacco plants.

View Article and Find Full Text PDF

Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves.

View Article and Find Full Text PDF

To study virus-vector interactions between Soilborne wheat mosaic virus (SBWMV) or Wheat spindle streak mosaic virus (WSSMV) and Polymyxa graminis Ledingham, P. graminis was propagated in plants grown hydroponically. P.

View Article and Find Full Text PDF

Experiments were conducted to determine if the 37 kDa protein (37K) of Soil-borne wheat mosaic virus (SBWMV) is a virus movement protein. First, evidence was obtained that indicated that 37K has the ability to move from cell to cell, similar to other virus movement proteins (MPs). Plasmids containing the GFP gene fused to the SBWMV 37K, the coat protein (CP) or the CP readthrough domain (RT) ORFs were delivered by biolistic bombardment to wheat and tobacco leaves.

View Article and Find Full Text PDF

Potato virus X (PVX) TGBp1, TGBp2, TGBp3, and coat protein are required for virus cell-to-cell movement. Plasmids expressing GFP fused to TGBp2 were bombarded to leaf epidermal cells and GFP:TGBp2 moved cell to cell in Nicotiana benthamiana leaves but not in Nicotiana tabacum leaves. GFP:TGBp2 movement was observed in TGBp1-transgenic N.

View Article and Find Full Text PDF

Potato virus X (PVX) TGBp3 is required for virus cell-to-cell movement. Cell-to-cell movement of TGBp3 was studied using biolistic bombardment of plasmids expressing GFP:TGBp3. TGBp3 moves between cells in Nicotiana benthamiana, but requires TGBp1 to move in N.

View Article and Find Full Text PDF

The requirements for intercellular movement of Potato virus X (PVX) 12K, 8K, and coat proteins (CP) differed in two Nicotiana spp. Plasmids containing the green fluorescent protein (GFP) gene fused to PVX 12K, 8K, or CP genes were bombarded to tobacco leaves. Protein movement was observed in N.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionohfndr3fc6et6l19a3kuroi7p58mimef): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once